Chapter 2. Random Variables

Download Report

Transcript Chapter 2. Random Variables

Chapter 2. Random Variables
2.1
2.2
2.3
2.4
2.5
2.6
NIPRL
Discrete Random Variables
Continuous Random Variables
The Expectation of a Random Variable
The Variance of a Random Variable
Jointly Distributed Random Variables
Combinations and Functions of Random Variables
2.1 Discrete Random Variable
2.1.1 Definition of a Random Variable (1/2)
• Random variable
– A numerical value to each outcome of a particular
experiment
S
R
-3
NIPRL
-2
-1
0
1
2
3
2.1.1 Definition of a Random Variable (2/2)
• Example 1 : Machine Breakdowns
– Sample space : S  {electrical , m echanical , m isuse}
– Each of these failures may be associated with a repair cost
– State space : {50, 200, 350}
– Cost is a random variable : 50, 200, and 350
NIPRL
2.1.2 Probability Mass Function (1/2)
• Probability Mass Function (p.m.f.)
– A set of probability value p i assigned to each of the values
taken by the discrete random variable x i
– 0  p i  1 and  i p i  1
– Probability : P ( X  x i )  p i
NIPRL
2.1.2 Probability Mass Function (1/2)
• Example 1 : Machine Breakdowns
– P (cost=50)=0.3, P (cost=200)=0.2,
P (cost=350)=0.5
– 0.3 + 0.2 + 0.5 =1
f (x)
xi
50
200
350
pi
0.3
0.2
0.5
0.5
0.3
0.2
50
NIPRL
200
350
C ost($)
2.1.3 Cumulative Distribution Function (1/2)
• Cumulative Distribution Function
– Function : F ( x )  P ( X  x ) F ( x )
– Abbreviation : c.d.f


P( X  y)
y: y  x
F (x)
1.0
0.5
0.3
0
NIPRL
50
200
350
x ($cost)
2.1.3 Cumulative Distribution Function (2/2)
• Example 1 : Machine Breakdowns
  x  50  F ( x )  P (cost  x )  0
50  x  200  F ( x )  P (cost  x )  0.3
200  x  350  F ( x )  P (cost  x )  0.3  0.2  0.5
350  x    F ( x )  P (cost  x )  0.3  0.2  0.5  1.0
NIPRL
2.2 Continuous Random Variables
2.2.1 Example of Continuous Random Variables (1/1)
• Example 14 : Metal Cylinder Production
– Suppose that the random variable X is the diameter of a
randomly chosen cylinder manufactured by the company.
Since this random variable can take any value between
49.5 and 50.5, it is a continuous random variable.
NIPRL
2.2.2 Probability Density Function (1/4)
• Probability Density Function (p.d.f.)
– Probabilistic properties of a continuous random variable
f ( x)  0

NIPRL
f ( x ) dx  1
statespace
2.2.2 Probability Density Function (2/4)
• Example 14
– Suppose that the diameter of a metal cylinder has a p.d.f
f ( x )  1.5  6( x  50.2)
2
for 49.5  x  50.5
f ( x )  0, elsew here
f (x)
49.5
NIPRL
50.5
x
2.2.2 Probability Density Function (3/4)
• This is a valid p.d.f.

50.5
49.5
(1 .5  6 ( x  5 0 .0 ) ) d x  [1 .5 x  2 ( x  5 0 .0 ) ] 49.5
2
3 50.5
 [1 .5  5 0 .5  2 (5 0 .5  5 0 .0 ) ]
3
 [1 .5  4 9 .5  2 (4 9 .5  5 0 .0 ) ]
3
 7 5 .5  7 4 .5  1 .0
NIPRL
2.2.2 Probability Density Function (4/4)
• The probability that a metal cylinder has a diameter between
49.8 and 50.1 mm can be calculated to be

5 0 .1
4 9 .8
(1 .5  6 ( x  5 0 .0 ) ) d x  [1 .5 x  2 ( x  5 0 .0 ) ] 4 9 .8
2
3
5 0 .1
 [1 .5  5 0 .1  2 (5 0 .1  5 0 .0 ) ]
3
 [1 .5  4 9 .8  2 ( 4 9 .8  5 0 .0 ) ]
3
 7 5 .1 4 8  7 4 .7 1 6  0 .4 3 2
f (x)
49.5
NIPRL
49.8
50.1
50.5
x
2.2.3 Cumulative Distribution Function (1/3)
• Cumulative Distribution Function
 F ( x)  P ( X  x) 
 f ( x) 

x

f ( y )dy
dF ( x)
dx
 P (a  X  b)  P ( X  b)  P ( X  a )
 F (b )  F ( a )
 P (a  X  b)  P (a  X  b)
NIPRL
2.2.2 Probability Density Function (2/3)
• Example 14
F ( x)  P ( X  x) 

x
(1.5  6( y  50.0) ) dy
2
49.5
 [1.5 y  2( y  50.0) ] 49.5
3 x
 [1.5 x  2( x  50.0) ]  [1.5  49.5  2(49.5  50.0) ]
3
3
 1.5 x  2( x  50.0)  74.5
3
P (49.7  X  50.0)  F (50.0)  F (49.7 )
 (1.5  50.0  2(50.0  50.0)  74.5)
3
 (1.5  49.7  2(49.7  50.0)  74.5)
3
 0.5  0.104  0.396
NIPRL
2.2.2 Probability Density Function (3/3)
P (49.7  X  50.0)  0.396
1
P ( X  50.0)  0.5
F (x)
P ( X  49.7)  0.104
49.5
NIPRL
49.7
50.0
50.5
x
2.3 The Expectation of a Random Variable
2.3.1 Expectations of Discrete Random Variables (1/2)
• Expectation of a discrete random variable with p.m.f
P ( X  xi )  p i

E(X ) 
p i xi
i
• Expectation of a continuous random variable with p.d.f f(x)
E(X ) 

xf ( x ) d x
state sp ace
• The expected value of a random variable is also called the
mean of the random variable
NIPRL
2.3.1 Expectations of Discrete Random Variables (2/2)
• Example 1 (discrete random variable)
– The expected repair cost is
E (cost )  ($50  0.3)  ($200  0.2)  ($350  0.5)  $230
NIPRL
2.3.2 Expectations of Continuous Random Variables (1/2)
• Example 14 (continuous random variable)
– The expected diameter of a metal cylinder is
E(X ) 

5 0 .5
x (1 .5  6 ( x  5 0 .0 ) ) d x
2
4 9 .5
– Change of variable: y=x-50
E (x) 


0.5
 0.5
0.5
 0.5
( y  50)(1.5  6 y ) dy
2
(  6 y  300 y  1.5 y  75) dy
3
2
 [  3 y / 2  100 y  0.75 y  75 y ]  0.5
4
3
2
 [25.09375]  [  24.90625]  50.0
NIPRL
0.5
2.3.2 Expectations of Continuous Random Variables (2/2)
• Symmetric Random Variables
– If x has a p.d.f f ( x ) that is
symmetric about a point 
so that
f (  x)  f (  x)
– Then, E ( X )  
E(X )  
(why?)
– So that the expectation of
the random variable is equal
to the point of symmetry
NIPRL
f (x)

x
E(X ) 
 xf ( x ) d x



-

xf ( x ) d x +  xf ( x ) d x

 y  2  x



-
 
NIPRL

xf ( x ) d x +  

-
yf ( y ) d y
2.3.3 Medians of Random Variables (1/2)
• Median
– Information about the “middle” value of the random variable
F ( x )  0.5
• Symmetric Random Variable
– If a continuous random variable is symmetric about a point  ,
then both the median and the expectation of the random
variable are equal to 
NIPRL
2.3.3 Medians of Random Variables (2/2)
• Example 14
F ( x )  1.5 x  2( x  50.0)  74.5  0.5
3
x  5 0 .0
NIPRL
2.4 The variance of a Random Variable
2.4.1 Definition and Interpretation of Variance (1/2)
• Variance(  )
– A positive quantity that measures the spread of the
distribution of the random variable about its mean value
– Larger values of the variance indicate that the distribution is
more spread out
2
– Definition:
V ar ( X )  E (( X  E ( X )) )
2
 E ( X )  ( E ( X ))
2
• Standard Deviation
– The positive square root of the variance
– Denoted by 
NIPRL
2
2.4.1 Definition and Interpretation of Variance (2/2)
V a r ( X )  E (( X  E ( X )) )
2
 E(X
2
 2 X E ( X )  ( E ( X )) )
 E(X
2
)  2 E ( X ) E ( X )  ( E ( X ))
 E(X
2
)  ( E ( X ))
2
2
2
f (x)
Two distribution with
identical mean values but
different variances
x
NIPRL
2.4.2 Examples of Variance Calculations (1/1)
• Example 1
V ar ( X )  E (( X  E ( X )) )   p i ( x i  E ( X ))
2
2
i
 0 .3(5 0  2 3 0 )  0 .2 (2 0 0  2 3 0 )  0 .5(3 5 0  2 3 0 )
2
 1 7 ,1 0 0  
 
NIPRL
2
17,100  130.77
2
2
2.4.3 Chebyshev’s Inequality (1/1)
• Chebyshev’s Inequality
– If a random variable has a mean  and a variance  2, then
P (   c  X    c  )  1 
1
c
2
for c  1
– For example, taking c  2 gives
P (   2  X    2 )  1 
1
2
NIPRL
2
 0.75
• Proof


2



( x   ) f ( x ) dx 
2

( x   ) f ( x ) dx  c 
2
| x   |  c
 P (| x   | c )  1 / c
2
2

| x   |  c
2
 P (| x   | c )  1  P (| x   | c )  1  1 / c
NIPRL
f ( x ) dx .
2
2.4.4 Quantiles of Random Variables (1/2)
• Quantiles of Random variables
– The p th quantile of a random variable X
F ( x)  p
– A probability of p that the random variable takes a value
less than the p th quantile
• Upper quartile
– The 75th percentile of the distribution
• Lower quartile
– The 25th percentile of the distribution
• Interquartile range
– The distance between the two quartiles
NIPRL
2.4.4 Quantiles of Random Variables (2/2)
• Example 14
3
F ( x )  1.5 x  2( x  50.0)  74.5 for 49.5  x  50.5
– Upper quartile : F ( x )  0.75
x  5 0 .1 7
– Lower quartile : F ( x )  0.25
x  4 9 .8 3
– Interquartile range : 5 0 .1 7  4 9 .8 3  0 .3 4
NIPRL
2.5 Jointly Distributed Random Variables
2.5.1 Jointly Distributed Random Variables (1/4)
• Joint Probability Distributions
– Discrete
P ( X  x i , Y  y j )  p ij  0
s a tis fyin g

i
p ij  1
j
– Continuous
f ( x , y )  0 satisfying

state space
NIPRL
f ( x , y ) dxdx  1
2.5.1 Jointly Distributed Random Variables (2/4)
• Joint Cumulative Distribution Function
– Discrete
F ( x , y )  P ( X  xi , Y  y j )
– Continuous
F ( x, y ) 
 
p ij
i : xi  x j : y j  y
F ( x, y ) 
NIPRL

x
w  

y
z  
f ( w , z ) d zd w
2.5.1 Jointly Distributed Random Variables (3/4)
• Example 19 : Air Conditioner Maintenance
– A company that services air conditioner units in residences
and office blocks is interested in how to schedule its
technicians in the most efficient manner
– The random variable X, taking the values 1,2,3 and 4, is the
service time in hours
– The random variable Y, taking the values 1,2 and 3, is the
number of air conditioner units
NIPRL
2.5.1 Jointly Distributed Random Variables (4/4)
Y=
number
of units
• Joint p.m.f
X=service time

1
2
3
4
1
0.12
0.08
0.07
0.05
2
0.08
0.15
0.21
0.13
i
p ij  0.12  0.18
j

 0.07  1.00
• Joint cumulative
distribution function
F (2, 2)  p11  p12  p 21  p 22
 0.12  0.18  0.08  0.15
3
NIPRL
0.01
0.01
0.02
0.07
 0.43
2.5.2 Marginal Probability Distributions (1/2)
• Marginal probability distribution
– Obtained by summing or integrating the joint probability
distribution over the values of the other random variable
– Discrete
P ( X  i )  pi 

p ij
j
– Continuous
f X (x) 
NIPRL



f ( x, y )dy
2.5.2 Marginal Probability Distributions (2/2)
• Example 19
– Marginal p.m.f of X
3
P ( X  1) 

p1 j  0 .1 2  0 .0 8  0 .0 1  0 .2 1
j 1
– Marginal p.m.f of Y
4
P (Y  1) 

i 1
NIPRL
p i1  0.12  0.08  0.07  0.05  0.32
• Example 20: (a jointly continuous case)
• Joint pdf:
f ( x, y )
• Marginal pdf’s of X and Y:
NIPRL
f X ( x) 

f ( x , y ) dy
fY ( y ) 

f ( x , y ) dx
2.5.3 Conditional Probability Distributions (1/2)
• Conditional probability distributions
– The probabilistic properties of the random variable X under
the knowledge provided by the value of Y
– Discrete
p ij
P ( X  i, Y  j )
p i| j  P ( X  i | Y  j ) 

P (Y  j )
p j
– Continuous
f X |Y  y ( x ) 
f ( x, y )
fY ( y )
– The conditional probability distribution is a probability
distribution.
NIPRL
2.5.3 Conditional Probability Distributions (2/2)
• Example 19
– Marginal probability distribution of Y
P (Y  3)  p  3  0.01  0.01  0.02  0.07  0.11
– Conditional distribution of X
p1|Y  3  P ( X  1 | Y  3) 
NIPRL
p13
p 3

0.01
0.11
 0.091
2.5.4 Independence and Covariance (1/5)
• Two random variables X and Y are said to be independent if
– Discrete
p ij  p i  p  j
for all values i of  X and  j of Y
– Continuous
f ( x , y )  f X ( x ) fY ( y )
fo r a ll x a n d y
– How is this independency different from the independence
among events?
NIPRL
2.5.4 Independence and Covariance (2/5)
• Covariance
C ov ( X , Y )  E (( X  E ( X ))(Y  E (Y )))
 E ( X Y )  E ( X ) E (Y )
C ov( X , Y )  E (( X  E ( X ))(Y  E (Y )))
 E ( XY  XE (Y )  E ( X )Y  E ( X ) E (Y ))
 E ( XY )  E ( X ) E (Y )  E ( X ) E (Y )  E ( X ) E (Y )
 E ( XY )  E ( X ) E (Y )
– May take any positive or negative numbers.
– Independent random variables have a covariance of zero
– What if the covariance is zero?
NIPRL
2.5.4 Independence and Covariance (3/5)
• Example 19 (Air conditioner maintenance)
E ( X )  2.59,
4
E ( XY ) 
3
  ijp
i 1
E (Y )  1.79
ij
j 1
 (1  1  0.12)  (1  2  0.08)

 (4  3  0.07 )  4.86
C ov ( X , Y )  E ( X Y )  E ( X ) E (Y )
 4.86  (2.59  1.79)  0.224
NIPRL
2.5.4 Independence and Covariance (4/5)
• Correlation:
C orr ( X , Y ) 
C ov ( X , Y )
V ar ( X )V ar (Y )
– Values between -1 and 1, and independent random
variables have a correlation of zero
NIPRL
2.5.4 Independence and Covariance (5/5)
• Example 19: (Air conditioner maintenance)
V ar ( X )  1.162, V ar (Y )  0.384
C orr ( X , Y ) 
C ov ( X , Y )
V ar ( X )V ar (Y )

NIPRL
0.224
1.162  0.384
 0.34
• What if random variable X and Y have linear relationship, that is,
Y  aX  b
where a  0
C ov ( X , Y )  E [ X Y ]  E [ X ] E [Y ]
 E [ X ( aX  b )]  E [ X ] E [ aX  b ]
 aE [ X ]  bE [ X ]  aE [ X ]  bE [ X ]
2
2
 a ( E [ X ]  E [ X ])  aV ar ( X )
2
C orr ( X , Y ) 
2
C ov ( X , Y )
V ar ( X )V ar (Y )
aV ar ( X )

That is, Corr(X,Y)=1 if a>0; -1 if a<0.
NIPRL
2
V ar ( X ) a V ar ( X )
2.6 Combinations and Functions of Random
Variables
2.6.1 Linear Functions of Random Variables (1/4)
• Linear Functions of a Random Variable
– If X is a random variable and Y  a X  b
for some numbers a , b  R then E (Y )  aE ( X )  b
and V ar (Y )  a 2 V ar ( X )
• Standardization
-If a random variable X has an expectation of  and a
2
variance of  ,
X 
1
  
Y 


X  

  
has an expectation of zero and a variance of one.
NIPRL
2.6.1 Linear Functions of Random Variables (2/4)
• Example 21:Test Score Standardization
– Suppose that the raw score X from a particular testing
procedure are distributed between -5 and 20 with an
expected value of 10 and a variance 7. In order to
standardize the scores so that they lie between 0 and 100,
the linear transformation Y  4 X  2 0 is applied to the
scores.
NIPRL
2.6.1 Linear Functions of Random Variables (3/4)
– For example, x=12 corresponds to a standardized score of
y=(4ⅹ12)+20=68
E (Y )  4 E ( X )  20  (4  10)  20  60
V ar(Y )  4 V ar( X )  4  7  112
2
Y 
NIPRL
112  10.58
2
2.6.1 Linear Functions of Random Variables (4/4)
• Sums of Random Variables
– If X 1 and X 2 are two random variables, then
E ( X 1  X 2 )  E ( X 1 )  E ( X 2 )            ( w hy ?)
and
V ar ( X 1  X 2 )  V ar ( X 1 )  V ar ( X 2 )  2C ov ( X 1 , X 2 )
– If X 1 and X 2 are independent, so that C o v ( X 1 , X 2 )  0
then
V ar ( X 1  X 2 )  V ar ( X 1 )  V ar ( X 2 )
NIPRL
• Properties of C ov ( X , X )
1
2
C ov ( X 1 , X 2 )  E [ X 1 X 2 ]  E [ X 1 ] E [ X 2 ]
 C ov ( X 1 , X 2 )  C ov ( X 2 , X 1 )
Cov ( X 1 , X 1 )  Var ( X 1 ) C ov ( X 2 , X 2 )  Var ( X 2 )
C ov ( X 1  X 2 , X 1 )  C ov ( X 1 , X 1 )  C ov ( X 2 , X 1 )
C ov ( X 1  X 2 , X 1  X 2 )  C ov ( X 1 , X 1 )  C ov ( X 1 , X 2 ) 
C ov ( X 2 , X 1 )  C ov ( X 2 , X 2 )
 Var ( X 1  X 2 )  Var ( X 1 )  Var ( X 2 )  2 Cov ( X 1 , X 2 )
NIPRL
2.6.2 Linear Combinations of Random Variables (1/5)
• Linear Combinations of Random Variables
– If X 1 , , X n is a sequence of random variables and a1 ,
and b are constants, then
E ( a1 X 1 
 a n X n  b )  a1 E ( X 1 ) 
 an E ( X n )  b
– If, in addition, the random variables are independent, then
V ar ( a1 X 1 
NIPRL
2
 a n X n  b )  a1 V ar ( X 1 ) 
2
 a n V ar ( X n )
, an
2.6.2 Linear Combinations of Random Variables (2/5)
• Averaging Independent Random Variables
– Suppose that X 1 , , X n is a sequence of independent
random variables with an expectation  and a variance  2 .
– Let
– Then
X 
X1 
 Xn
n
E(X )  
and
V ar ( X ) 

2
n
– What happened to the variance?
NIPRL
2.6.2 Linear Combinations of Random Variables (3/5)
1
E(X )  E  X1 
n
1
1
 

1

n

Xn
n

1
n
E ( X 1) 

1
n
E(X n)
n
1
V ar ( X )  V ar  X 1 
n
2
1
  
n
NIPRL

2
 1
 X n     V ar ( X 1 ) 
n
 n
1
2
2

1
  
n
2


2
n
2
1
  V ar ( X n )
n
2.6.2 Linear Combinations of Random Variables (4/5)
• Example 21
– The standardized scores of the two tests are
Y1 
10
3
X1
Y2 
and
5
3
X2 
50
3
– The final score is
Z 
2
3
NIPRL
Y1 
1
3
Y2 
20
9
X1 
5
9
X2 
50
9
2.6.2 Linear Combinations of Random Variables (5/5)
– The expected value of the final score is
E (Z )

20
9
E ( X1) 
5
9
E(X 2) 
50
9
 20
 5
 50
 
 18     30  
9
 9
 9

 6 2 .2 2
– The variance of the final score is
5
50 
 20
V ar ( Z )  V ar 
X1  X 2 

9
9 
 9
2
2
 20 
5


V
ar
(
X
)

1

   V ar ( X 2 )
 9 
9
2
2
 20 
5


24


   60  137.04
9


9
NIPRL
2.6.3 Nonlinear Functions of a Random Variable (1/3)
• Nonlinear function of a Random Variable
– A nonlinear function of a random variable X is another
random variable Y=g(X) for some nonlinear function g.
Y  X , Y 
2
X , Y  e
X
– There are no general results that relate the expectation and
variance of the random variable Y to the expectation and
variance of the random variable X
NIPRL
2.6.3 Nonlinear Functions of a Random Variable (2/3)
– For example,
f(x)=1
E(x)=0.5
f X ( x )  1 for 0  x  1
f ( x)  0
elsew here
0
F X ( x )  x fo r 0  x  1
1
x
f(y)=1/y
E(y)=1.718
– Consider
Y e
X
w here 1  Y  2.718
– What is the pdf of Y?
NIPRL
1.0
2.718
y
2.6.3 Nonlinear Functions of a Random Variable (3/3)
• CDF methd
FY ( y )  P (Y  y )  P ( e
X
 y )  P ( X  ln( y ))  F x (ln( y ))  ln( y )
– The p.d.f of Y is obtained by differentiation to be
fY ( y ) 
dFY ( y )

dy
1
for 1  y  2.718
y
• Notice that
E (Y ) 

E (Y )  e
NIPRL
2.718
z 1
E(X )
zf Y ( z ) dz 
e
0.5

2.718
z 1
 1.649
1dz  2.718  1  1.718
• Determining the p.d.f. of nonlinear relationship between r.v.s:
Given f X ( x ) and Y  g ( X ) ,what is f Y ( y ) ?
If
x1 , x 2 ,
, x n are all its real roots, that is,
y  g ( x1 )  g ( x 2 ) 
then
n
fY ( y ) 
f X ( xi )
 | g '( x ) |
i 1
where
g '( x ) 
dg ( x )
dx
NIPRL
i
 g ( xn )
•
Example: determine f Y ( y )
f X ( x )  1 for 0  x  1
f ( x)  0
elsew here
y  g ( x)  e
 ln y  x
dg
x
dx
fY ( y ) 
NIPRL
|y|

X
w here 1  Y  2.718
x
-> one root is possible in 0  x  1
e  y
1
Y e
1
y