International School on: Quark-Gluon Plasma and Heavy Ion Collisions: Past, Present, Future Villa Gualino, Turino, Italy Soft Probes Christoph Blume University of Heidelberg.

Download Report

Transcript International School on: Quark-Gluon Plasma and Heavy Ion Collisions: Past, Present, Future Villa Gualino, Turino, Italy Soft Probes Christoph Blume University of Heidelberg.

International School on:
Quark-Gluon Plasma and Heavy Ion Collisions:
Past, Present, Future
Villa Gualino, Turino, Italy
Soft Probes
Christoph Blume
University of Heidelberg
What are Soft Probes ?
Particles below a certain pt threshold (e.g. 2 GeV/c)
Processes with small momentum transfer
⇒ pQCD not applicable
Use effective theories, transport models, statistical models
Characterize global (bulk) properties of heavy ion reactions
Sensitive to the late stage of the reaction
Probe hadronization features
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Space-Time Diagram
Freeze-Out
Hadronization
QGP formation
Hard scatterings
Incoming nuclei
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Observables
Temperature
Strangeness
Resonances
Femtoscopy
Correlations
Flow
Jets +
Heavy Flavor
Photons
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Global Event Characteristics
How much of the incoming beam energy is transformed
into particle production and collective effects?
⇒ Stopping (transfer of baryon number)
How many particles are produced in a collision and
what energy densities can be achieved?
⇒ Charged particle multiplicities
How can one define the centrality of a reaction?
⇒ Zero degree energy, multiplicities, ...
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Femtoscopy
What is the size of the particle emitting fireball?
What are its dynamic properties?
⇒ Evidence for transverse expansion
What is the lifetime of the fireball?
⇒ Freeze-out time
⇒ Emission duration
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Stopping
Baryon-Number Distributions
Lower energies:
yP
yT
y
y
y0
Christoph Blume
Higher energies:
yP
yT
y y’p
y’T y
y0
Villa Gualino, Turino, 7-12 March 2011
How to Measure Baryon-Number Distributions
Net-proton distributions: Protons - Antiprotons
-
=
Other contributions (neutrons, hyperons) usually ignored
(difficult to measure)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Dependence of Net-Protons
BRAHMS: PRL93, 102301 (2004)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Dependence of y
RHIC (sNN = 200 GeV):
E
= 25.7 ± 2.1 TeV
E/Nucleon = 72.0 ± 6.0 GeV
Rapidity shift:
Christoph Blume
Energy loss:
Villa Gualino, Turino, 7-12 March 2011
Inelastic Energy per NN Collision
Central data
Energy of single net-baryon:
Christoph Blume
Total inelastic energy
per NN collision:
Villa Gualino, Turino, 7-12 March 2011
Inelasticity of Heavy Ion Collisions
Central data
 p+p
Inelasticity:
Christoph Blume
⇒ ≈ 70% of available energy
is transformed into particle
production and expansion
of fireball (p+p ≈ 50%)
Villa Gualino, Turino, 7-12 March 2011
Net-protons:
3 valence Quarks (uud )
dn/dy (a.u.)
Rapidity Distributions of Baryons
Central Pb+Pb,
158A GeV
Net s:
2 valence (ud ) +
1 produced Quark (s )
Net s:
1 valence (d ) +
2 produced Quarks (ss )
Omegas:
3 produced Quarks (sss )
y
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Multiplicities
Charged Particle Multiplicities
Very simple observable
“Just” need to count tracks
1st ALICE paper a week
after beginning of
heavy ion data taking
But can already kill a lot of models ...
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Charged Particle Multiplicity Densities at Mid-Rapidity
central A+A
ALICE: PRL105, 252301 (2010)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Model Comparisons
Extrapolation
QCD based
MC models
Initial gluon
density
saturation
ALICE: PRL105, 252301 (2010)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Density in Heavy Ion Collisions (Bjørken)
Before the collision:
Nucleus A
Nucleus B
After the collision:
Nucleus B’
PRD27, 140 (1983)
Nucleus A’
Region of maximal
energy deposition
Connection between spatial coordinate z and
measured rapidity y for a given produced particle:
Assuming a constant formation time:
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Density in Heavy Ion Collisions (Bjørken) (II)
Volume in region of maximal energy density:
Particle density at formation time τ0:
Energy density at formation time τ0:
⇒
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Density in Heavy Ion Collisions (Bjørken) (III)
Estimates of experimentally achieved energy densities:
SPS (sNN = 17.3 GeV):
RHIC (sNN = 200 GeV):
LHC (sNN = 2.76 TeV):
0  3 GeV/fm3
0  6 GeV/fm3
0 ≥ 18 GeV/fm3
Compare to critical energy density for QGP formation (lattice QCD):
0  0,7 GeV/fm3
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Measurement of Event Centrality (Example ALICE)
Spectator
Fireball
Participants
Spectator
Rapidity
V0
Christoph Blume
Zero Degree Calorimeter
Villa Gualino, Turino, 7-12 March 2011
Centrality Selection
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Centrality Dependence of Charged Multiplicities
ALICE: PRL106, 032301 (2011)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Model Comparisons
ALICE: PRL106, 032301 (2011)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Femtoscopy
Narrabri Interferometer, Australia
Robert Hanbury Brown
+ Richard Q. Twiss
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Narrabri Interferometer, Australia
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
HBT Correlation Function
2-Photon correlation function:
Distance d between detectors
⇒ Enhancement due to Bose-Einstein statistics of photons
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Goldhaber-Goldhaber-Lee-Pais (GGLP-)Effect (1959)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Bose-Einstein Correlations in Heavy Ion Physics
Width of correlation function is inversely proportional
to the size of the particle emitting source
⇒ Measurement of fireball size in heavy ion reactions
Information on source dynamics
⇒ Transverse expansion
⇒ Lifetime
⇒ Emission duration
Literature:
U.A. Wiedemann and U. Heinz, Phys.Rept. 319, (1999)
M.A. Lisa and S. Pratt, arXiv:0811.1352
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Quantum Correlations (Bose Einstein)
Source Q :
Single particle wave function:
Amplitude
Phase
Propagation x → x’
Coherent source: f (x) have fixed relation to each other for all x
Chaotic source: f (x) are randomly distributed
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Quantum Correlations (Bose Einstein) (II)
Total source Q : sum over all emission points x :
Probability to observe one particle:
= 0 for chaotic source
Density of emission points:
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Quantum Correlations (Bose Einstein) (III)
Source Q :
Pair wave function:
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Quantum Correlations (Bose Einstein) (IV)
Probability to observe a pair with k1 and k2 emitted from source Q :
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Quantum Correlations (Bose Einstein) (V)
Relative momentum q = k1 – k2
Effective emission distribution:
Fourier transformed distribution
Correlation function:
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
General 2-Particle Correlations
Identical bosons:
⇒ enhancement for small q
Gaussian static source:
⇒
q
Identical fermions:
⇒ depletion for small q
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Interactions
Coulomb interaction:
All charged particles (e.g. π- π-)
Usually corrected for or taken into account in fit in the
case of Bose-Einstein correlations (⇒ Gamow-factor)
Strong interaction:
Can be neglected for pions,
but affects heavier particles (e.g. kaons)
Main influence in the case of
baryon-baryon correlations (e.g. pp)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Dynamical Sources
Particle sources expand
Differently in longitudinal and transverse direction
⇒ 3-dimensional radius parameters
Yano-Koonin-Podgoretskii (YKP)
Bertsch-Pratt (BP)
Interpretation of radius parameter as source size meaningless
⇒ Lengths of homogeneity
Radius parameter depend on transverse momentum (kt) of the pairs
Flow introduces space momentum correlations
Also: resonance decays, jets, ...
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Bertsch-Pratt Parametrisation
3-dimensional parametrization:
Long: defined by beam-axis
Mixed term vanishes at mid-rapidity
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Bertsch-Pratt Parametrisation
high mass or mT
low mass or mT
M.A. Lisa and S. Pratt, arXiv:0811.1352
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Radius Parameters for an Expanding Source
Rlong: Proportional to thermal
,,Freeze-Out”-time f
(Y. Sinyukov).
Tf: freeze-out temperature
mT: transverse mass of the pair
Rside: Sensitive to transverse
expansions-velocity T
(U. Heinz, B. Tomasik, U. Wiedemann)
RGeo: Geometrical, static radius
Rout: Sensitive to
emission
duration
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Entries
How to Measure Two-Particle Correlations
m real pairs
S
Entries
qinv
=
n uncorrelated pairs
from event mixing
B
qinv
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Correlation Functions (Example)
NA49: central Pb+Pb @ 158A GeV, PRC77, 064908 (2008)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
kt-Dependence of Radius Parameters
Central Pb+Pb @ 158A GeV
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Longitudinal Expansion from Bose-Einstein Correlations
> 15%
10 - 15%
5 - 10%
NA45: Pb+Pb @ 158A GeV, NPA714, 124 (2003)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
< 5%
Transverse Expansion from Bose-Einstein Correlations
> 15%
10 - 15%
5 - 10%
NA45: Pb+Pb @ 158A GeV, NPA714, 124 (2003)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
< 5%
Combination of Bose-Einstein Correlations and Spectra
Bose-Einstein Corr.:
Spectra:
EPJ C2, 661 (1998)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Dependence of Radius Parameter
kt = 0.2 GeV
PRC77,
064908 (2008)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
dNch/dη (Energy) Dependence of Radius Parameter
ALICE: PLB696, 328 (2011)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
dNch/dη (Energy) Dependence of Freeze-Out Time
ALICE: PLB696, 328 (2011)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Other Two-Boson Correlations: Kaons
long
out
side
K+
K-
NA49: PLB557, 157 (2003)
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Two Fermion Correlations: Proton – Proton
Fermi-Dirac statistics
Coulomb interaction
Strong interaction (2He res.)
Christoph Blume
⇒ anti-correlation for small q
⇒ anti-correlation for small q
⇒ enhancement
Villa Gualino, Turino, 7-12 March 2011
More Exotic Correlations ...
STAR:
PRC74, 064906 (2006)
Christoph Blume
NA49:
CERN-PH-EP-DRAFT-NA49-2011-001
Villa Gualino, Turino, 7-12 March 2011
Different Particle Correlations Compared
STAR: Au+Au, √sNN = 200 GeV
M.A. Lisa and S. Pratt, arXiv:0811.1352
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Soft Probes I
Heavy ion collisions are very effective in translating beam energy
into particle production, collective effects
⇒ 70% of incoming energy (stopping)
Very high energy densities can be achieved
≥ 18 GeV/fm3 @ LHC (Bjorken estimate)
Size of the fireball @ LHC from Bose-Einstein correlations:
V ≈ 300 fm3
Freeze-Out times τ ≥ 10 fm/c
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Observables
Temperature
Strangeness
Resonances
Femtoscopy
Correlations
Flow
Jets +
Heavy Flavor
Photons
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Energy Dependence of Net-Protons
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Kinematics (I)
Center-of-mass energy in nucleon-nucleon system:
ECM  sNN 
E1  E 2 
2
w ith: sNN  P1  P2 
2

 p1  p 2

2
,P  4 - momentum
One particle in rest (fixed target):
1/ 2

E CM  m12  m22  2E1 E 2 1 1 2 cos 
 m12  m22  2E1,lab m2 
1/ 2

Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Kinematics (II): Transverse Direction
Beam axis = z-axis
Transverse spectra are Lorentz-invariant!
Transverse momentum:
pt  p x2  p y2
Transverse mass:
mt  pt2  m02 , m0  rest mass
xT:
xT  pt ptmax  2pt
sN N

Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
m
0
 s N N

Kinematics (III): Longitudinal Direction
Feynman-x:
x F  pz* pz*,max  2pz*
Properties:
sN N
m
0
 s N N

Orthogonal to px, py
Not Lorentz-invariant
Rapidity:
1  E  pz
y  
2  E  pz
Properties:
 E  pz

  ln

 mt

p
  tanh1  z 
E 

Not orthogonal to px, py
Not Lorentz-invariant, but shape
of distributions does not change
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Kinematics (IV): Longitudinal Direction
Pseudorapidity:


  
1  p  pz 
 


ln
 tan  

2  p  pz 
  2 


Properties:
Similar to rapidity, but shape of
distributions depends on
Lorentz-system
Requires only measurement of
polar angle θ (no mass)
Important relations:
E  mt cosh y
p  pt cosh
p z  mt sinh y
p z  pt sinh

Christoph Blume
dpz
 mt cosh y  E
dy
Villa Gualino, Turino, 7-12 March 2011
Rapidity  Feynman-x
2p z*
xF 
sN N
2mt sinh y *

sN N
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Comparison: Feynman-x and Rapidity
_
pp → p (p) + X @ 158 GeV
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Comparison: Feynman-x and Rapidity
pp → π+ (π-) + X @ 158 GeV
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Rapidity  Pseudorapidity
Rapidity
Pions
Pseudorapidity
y/
m 02
dN
dN
 1 2
d dp t
mt cosh 2 y dy dp t
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
Kinematics (V): Invariant Cross Section
Lorentz-invariant values:
dp x dpy
Differential cross section:



d
d
E

since:
dpx dpy dpz dpx dpy dy 
3
dpz
E
3
dy 
dpz 

E 
d 3

df dy pt dpt
1 1 d 2

2 pt dy dpt
azimuthal sym.
d 2

 dy dpt2 
1
Christoph Blume
Villa Gualino, Turino, 7-12 March 2011
systems