X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way…… 1 mm.

Download Report

Transcript X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way…… 1 mm.

X-ray Imaging of Magnetic Nanostructures
and their Dynamics
Joachim Stöhr
Stanford Synchrotron Radiation Laboratory
X-Rays have come a long way……
1 mm
1895
1993
2003
Andreas Bauer1,2
Andreas Scholl1
Jan Lüning2
Howard A. Padmore1
Andrew Doran1
2
Aaron Lindenberg3 Yves Acremann
Sug-Bong Choe1
Hendrik Ohldag2
Squaw Valley, April 2003
1
Advanced Light Source
2 Stanford Synchrotron Radiation Laboratory
3 UC Berkeley
Fe metal – L edge
Kortright and Kim, Phys. Rev. B 62, 12216 (2000)
Soft X-Rays are best for magnetism!
Imaging by Coherent X-Ray Scattering
Phase problem can be solved by “oversampling” speckle image
Transmission
X-ray
Microscope
Reconstruction
from
Speckle Intensities
 5 mm
(different areas)
S. Eisebitt, M. Lörgen, J. Lüning, J. Stöhr, W. Eberhardt, E. Fullerton (unpublished)
Magnetic Spectroscopy and Microscopy
Spectromicroscopy of Ferromagnets and Antiferromagnets
AFM domain
structure at
surface of NiO
substrate
s
[010] s
2mm
NiO
XMLD
0.10
8
TEY (a.u.)
TEY (a.u.)
0.15
0.05
Co
XMCD
4
0
0.00
868
870
872
874
Photon Energy(eV)
777
778
779
Photon Energy (eV)
H. Ohldag, A. Scholl et al., Phys. Rev. Lett. 86(13), 2878 (2001).
FM domain
structure in
thin Co film on
NiO substrate
Magnetic characterization of interfacial spins
Co/NiO
Co/IrMn
Co
15
Co
10
XMCD Asymmetry (%)
5
NiO
0
-5
-10
-15
0.3
Mn
0.2
0.1
0.0
-0.1
Publications:
Stöhr et al., Phys. Rev. Lett. 83, 1862 (1999)
Thomas et al., Phys. Rev. Lett. 84, 3462 (2000)
Scholl et al., Science 287, 1014 (2000)
Nolting et al., Nature 405, 707 (2000)
Regan et al. Phys. Rev. B 64, 214422 (2001)
Ohldag et al., Phys. Rev. Lett. 86 2878 (2001)
Ohldag et al., Phys. Rev. Lett. 87, 247201 (2001)
Ohldag et al., Phys. Rev. Lett. 91, 017203 (2003)
-0.2
-0.3
-3k
-2k
-1k
0
1k
2k
3k
Applied Field (Oe)
loop of interfacial spins only 4% are pinned
Exchange Bias Model from X-Rays
ideal AFM
poly AFM
Present limitations of magnetic recording
• Present method of magnetic switching is unfavorable:
– present recording time ~1 ns
– unfavorable torque and dependent on thermal activation
Fast Magnetization Dynamics is governed by
Landau-Lifschitz-Gilbert equation:

1 dM

 
- M H

 dt
Angular momentum change
1 

 M
Precession torque
1 Tesla field: 90o rotation in 10 ps








M

dM
dt







Gilbert damping torque
Typically  << 1, 100 ps
We want to understand  on atomic level
 controls switching time, ~1 optimal
Time Resolved X-Ray Microscopy
Laser pump – x-ray probe
synchronization
excitation
laser pulse
t
observation
x-ray pulse
328 ns
< 1 ps
< 100 ps
Production of Magnetic Field Pulses
Photoconductive switch
100 mm
100 mm
2 mm 2 mm
H ~ 200 Oe
Conducting wire
50  =>
I = 200 mA, 10 V bias
Magnetic Cells
Current 10 mm
Sample and Magnetic Field Pulse
20 nm Co90Fe10 films with in-plane anisotropy (1 mm) x (1-3 mm) rectangles
Current
magnetic field
1.06
Magnetic Field Pulse
~ 150 Oe at Maximum
< 50 ps rising time
> 300 ps decaying time
with some reflection
Deflection ratio
M
1.04
150
100
1.02
50
1.00
0
0
2000
4000
Delay (ps)
6000
8000
Magnetic field (Oe)
200
Observation of Vortex Motion
H
2 mm x 1 mm
1.5 mm x 1 mm
400
100
y displacement (nm)
y displacement (nm)
1 mm x 1 mm
50
0
-50
-50
0
50
x displacement (nm)
100
200
Vortices rotate oppositely
- vortex cores point in opposite directions
0
-200
0
200
400
600
x displacement (nm)
Vortex speed ~ 100 m/s
Conclusions
The challenge of the future is to control the magnetization on the nanometer length scale
and picosecond/femtosecond time scale
Our current capabilities are:
•
image the magnetization with 50 nm spatial resolution,
•
image the response of the magnetization with 100 ps time- and 100 nm spatial resolution
Outlook into the future:
•
5 nm spatial resolution – PEEM3, under construction
•
100 fs time resolution:
pump-probe excitations
single snapshots of equilibrium dynamics
Modern x-ray sources offer unique opportunities for studies of the ultrafast magnetic nanoworld
The End
Vortex Structure And Vortex
Elevation view
Motion
torque
H
Plane view
d
m   m  H eff
dt
Landau-Lifshitz equation:
(neglect damping)
Motion antiparallel to field!
The field acts like a screw driver.
Depending on the orientation of the thread pitch,
the screw (vortex) will move either forward or backward
Vortex Precession
M
Under a field pulse,
the vortex moves from the center.
Happlied
After the field pulse,
the vortex continues to move radially
due to the magnetostatic energy.
Induced magnetostatic field is always
perpendicular to the vortex motion.
Hmagnetostatic
x
dx
H
dH
Magnetostatic field is always
perpendicular to the vortex deviation
Vortex will precess forever
if there is no damping.
Incoherent vs. Coherent X-Ray Scattering
Small Angle Scattering
-40
40
-20
0
20
scattering vector q (mm-1)
Coherence length larger than domains,
but smaller than illuminated area
information
about
domain
statistics
20
0
-20
-40
40
log (intensity)
-40
-20
0
20
40
scattering vector q (mm-1)
Coherence length
larger than illuminated area
-40
40
-20
0
20
scattering vector q (mm-1)
Speckle
true
information
about
domain
structure
20
0
-20
-40
40
log (intensity)
-40
-20
0
20
scattering vector q (mm-1)
40
Pulse Structure
Possible solutions:
- gated detector, pulse picker
- pump at 500 MHz