Mathematical Music Theory — Status Quo 2000 Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org.

Download Report

Transcript Mathematical Music Theory — Status Quo 2000 Guerino Mazzola U & ETH Zürich Internet Institute for Music Science [email protected] www.encyclospace.org.

Mathematical Music Theory
— Status Quo 2000
Guerino Mazzola
U & ETH Zürich
Internet Institute for Music Science
[email protected]
www.encyclospace.org
Contents
• Time Table
• The Concept Framework
• Global Classification
• Models and Methods
• Towards Grand Unification
Theory
Software
Grants
Kelvin Null
Time
1978
1980
1981
1984
1985
1986
1988
Status quo
1990
1992
1994
1995
1996
1998
1999
2000
2001
Music
Gruppentheoretische Methode
in der Musik
Gruppen und
Kategorien in
der Musik
Karajan
Presto®
RUBATO
Project
RUBATO®
NeXT
Mac OS X
Topos of Music
Depth-EEG for
Consonances
and Dissonances
Synthesis
Geometrie
der Töne
Morphologie
abendländischer
Harmonik
Akroasis
M(2,Z)\Z2
Immaculate
Concept
Kuriose Geschichte
KiT-MaMuTh
Project
Kunst der Fuge
Concepts
Mod = category of modules + diaffine morphisms:
• A = R-module, B = S-module
• Dilin(A,B) = (l,f)
f:A B additive,
l:R S ring homomorphism
f(r.a) = l(r).f(a)
• eb(x) = b+x; translation on B
• A@B = eB.Dilin(A,B)
eb.f: A B B
dilinear
translation
Concepts
Topos of presheaves over Mod
Mod@ = {F: Mod  Sets, contravariant}
Example: representable presheaf
@B: @B(A) = A@B
F(A) =: A@F
A = address
Yoneda Lemma
The functor @: Mod  Mod@ is fully faithfull.
B ~> @B
Concepts
K B
B
Database Management Systems
require recursively stable
object types!
• k 
• K B no module!
Need more general spaces F
F = W@B
A = 0Ÿ
B @0Ÿ@B
K A
0Ÿ@B
• A = Ÿn: sequences
(b0,b1,…,bn)
• A = B: self-addressed tones
Need general addresses A
K  A@F
F = presheaf over Mod
F = @B
Concepts
F = Form name
one of four „space types“
a diagramn √ in Mod@
a monomorphism in Mod@
Forms

>
id: Functor(F) >Frame(√)
Functor(F)
Frame(√)
Frame(√)-space for type
√ = ~>@
simple(√) = @B
√ = Form-Name-Diagram Mod@
limit(√) = lim(Form-Name-Diagram Mod@)
• colimit √ = Form-Name-Diagram Mod@
colimit(√) = colim(Form-Name-Diagram Mod@)
• power √ = Form-Name F ~>Functor(F)
power(√) = WFunctor(F)
• simple
• limit
Denotators
Concepts
D = denotator name
address A
A
K
K  A@ Functor(F)
„A-valued point“

>
Form F
Functor(F)
Frame(√)
Concepts
MakroNote
• Ornaments
• Schenker Analysis
AnchorNote
Satellites
MakroNote
Onset
Pitch
Loudness
Duration
–
Ÿ
STRG
–
Concepts
Java Classes for
Modules,
Forms, and Denotators
RUBATO®
L
L
S
S
Concepts
Galois Theory
Form Theory
Defining equation
Defining diagram
fS(X) = 0
x1
x2
x3
Field S
xn
id √(F)
F2
F1
Fr
Form System
Mariana Montiel Hernandez, UNAM
Classification
Category Loc of local compositions
Type = Power
F ~>Functor(F) = G
local composition K A@WG
objects
K @A  G
generalizes K A@G „objective“ local compositions
K @A  G
morphisms
f/a
@a  h
L @  H
a = affine morphism
f, h = natural transformations
specify „address change“ a
Classification
ObLoc
Loc
Embedding
functor
Trace
functor
ObLocA
LocA
Theorem
• Loc is finitely complete (while ObLoc is not!)
• On ObLocA and LocA Embedding and Trace
are an adjoint pair:
ObLocA(Embedding(K),L) @ LocA(K,Trace(L))
Classification
K
K
Ktt @A
A@G
G
t t
 K
Kii
@AA@G
 Gii 


Kit
Kti
local isomorphism/A
Classification
Category Gl of global compositions
Objects:
KI = functor K which is covered
by a finite atlas I = (Ki)
of local compositions in LocA at address A
Morphisms:
KI at address A
LJ at address B
f/a: KI LJ
f = natural transformation,
aA= address change
f induces local morphisms fij/a on the charts
Classification
Have Grothendieck topology Cov(Gl) on Gl
Covering families
(fi/ai: KIi LJ)i
are finite, generating families.
Theorem
• Cov(Gl) is subcanonical
• The presheaf GF: KI ~> GF(KI) of global affine functions
is a sheaf.
Classification
Have universal construction of a „resolution of KI“
res: ADn* KI
It is determined only by the KI address A and the
nerve n* of the covering atlas I.
res
ADn*
KI
Classification
Theorem (global addressed geometric classification)
Let A = locally free of finie rank over commutative ring R
Consider the objective global compositions KI at A with (*):
• locally free chart modules R.Ki
• the function modules GF(Ki) are projective
(i) Then KI can be reconstructed from the coefficient system of
retracted functions
res*F(KI)  F(ADn*)
(ii) There is a subscheme Jn* of a projective R-scheme of finite
type whose points w: Spec(S) Jn* parametrize the isomorphism
classes of objective global compositions at address SƒRA with (*).
Classification
Applications of classification:
• String Quartet Theory: Why four strings?
• Composition: Generic compositional material
• Performance Theory: Why deformation?
Models
There are models for these musicological topics
• Tonal modulation in well-tempered and just
intonation and general scales
• Classical Fuxian counterpoint rules
• Harmonic function theory
• String quartet theory
• Performance theory
• Melody and motive theory
• Metrical and rhythmical structures
• Canons
• Large forms (e.g. sonata scheme)
• Enharmonic identification
Mazzola
Mazzola/Noll
Noll
Ferretti
Nestke
Noll
Models
What is a mathematical model of a musical phenomenon?
Music
Mathematics
Field of Concepts
Precise Concept
Framework
Material Selection
Instance specification
Process Type
Formal process restatement
Grown rules for process
• construction and
• analysis
Proof of structure theorems
Why this material, these rules,
relations?
Deduction of rules from
structure theorems
Generalization!
Anthropomorphic Principle!
Models
Arnold Schönberg: Harmonielehre (1911)
Old Tonality
Neutral
Degrees
(IC, VIC)
Modulation
Degrees
(IIF, IVF, VIIF)
New Tonality
Cadence
Degrees
(IIF & VF)
• What is the considered set of tonalities?
• What is a degree?
• What is a cadence?
• What is the modulation mechanism?
• How do these structures determine the
modulation degrees?
Models
I
II
III
IV
V
VI
VII
Models
gluon
W+
g
strong force
weak force
electromagnetic
force
graviton
gravitation
quantum = set of
pitch classes = M
S(3)
T(3)
force = symmetry between
S(3) and T(3)
k
k
IVC
IIEb
Models
VIIEb
IIC
M(3)
VC
C(3)
VIIC
VEb
IIIEb
E b(3)
Unification
Ÿ12 @ Ÿ3 x Ÿ4
Ÿ12[e]
ƒ1
K = Ÿ12 +e.{0,3,4,7,8,9} = consonances
e e.2.5
D = Ÿ12 +e.{1,2,5,6,10,11} = dissonances
Unification
Rules of Counterpoint
Following J.J. Fux
C/D Symmetry in
Human Depth-EEG
Extension to Exotic
Interval Dichotomies
0
Ÿ12 @ 0 @ Ÿ12


X={
Ÿ12 @ Ÿ12
}
Trans(X,X)
D = C-dominant triad
T = C-tonic triad
K
ƒ1
Z12
Z12[e]
Trans(D, T) = Trans(K,K)|ƒe
Z12 @ Z12
ƒe
Z12 [e] @ Z12 [e]
The Topos of Music
Geometric Logic of
Concepts, Theory, and Performance
in collaboration with
Moreno Andreatta, Jan Beran, Chantal Buteau,
Karlheinz Essl, Roberto Ferretti, Anja Fleischer,
Harald Fripertinger, Jörg Garbers, Stefan Göller,
Werner Hemmert, Mariana Montiel, Andreas Nestke,
Thomas Noll, Joachim Stange-Elbe, Oliver Zahorka
www.encylospace.org