S. N. Ershov Joint Institute for Nuclear Research Halo Nuclei HALO: new structural dripline phenomenon with clusterization into an ordinary core nucleus and a veil.
Download ReportTranscript S. N. Ershov Joint Institute for Nuclear Research Halo Nuclei HALO: new structural dripline phenomenon with clusterization into an ordinary core nucleus and a veil.
S. N. Ershov Joint Institute for Nuclear Research Halo Nuclei HALO: new structural dripline phenomenon with clusterization into an ordinary core nucleus and a veil of halo nucleons – forming very dilute neutron matter Chains of the lightest isotopes ( He, Li, Be, B, …) end up with two neutron halo nuclei Nuclear scale ~ 10-22 sec Width 1 ev ~ 10-16 sec Two neutron halo nuclei ( 6He , 11Li , 14Be , … ) break into three fragments and are all Borromean nuclei Life time for radioactive nuclei > 10-12 sec One neutron halo nuclei ( 11Be , 19C , … ) break into two fragments b decays define the life time of the most radioactive nuclei ( 6He, 11Li, 11Be, 14Be, 17B, … ) weakly bound systems with large extension and space granularity “Residence in forbidden regions” Appreciable probability for dilute nuclear matter extending far out into classically forbidden region 11Li n ~ 7 fm n ~ 5 fm 2.3 fm 9Li Separation energies of last neutron (s) : halo <1 stable 6 - 8 MeV Large size of halo nuclei Two-neutron halo nuclei ( 11Li, 6He, 14Be, 17B, . . . ) Borromean system is bound e (11Li ) = 0. 3 MeV e (11Be) = 0. 5 MeV e ( 6He) = 0. 97 MeV < r2 (11Li) >1/2 ~ ( r.m.s. for A ~ 3.5 fm 48 ) Borromean systems none of the constituent two-body subsystems are bound Peculiarities of halo nuclei: the example of 11Li (i) weakly bound: the two-neutron separation energy (~300 KeV) is about 10 times less than the energy of the first excited state in 9Li . (ii) large size: interaction cross section of 11Li is about 30% larger than for 9Li 4.0 This is very unusual for strongly interacting systems held together by short-range interactions Be B RI ( fm ) 3.5 Li 3.0 Interaction radii : He E / A = 790 MeV, light targets 2.5 1/3 1.18A 2.0 6 8 10 12 14 16 18 I. Tanihata et al., Phys. Rev. Lett., 55 (1985) 2676 A (iii) very narrow momentum distributions, compared to stable nuclei, of both E / A = 800 MeV 1200 11 9 C( Li, Li) Counts 800 s = 21 MeV/c neutrons and 9Li measured in high energy fragmentation reactions of 11Li . No narrow fragment distributions in breakup on other fragments, say 8Li or 8He ( naive picture ) narrow momentum distributions 400 0 -400 -200 0 200 400 transverse momementum ( MeV / c ) large spatial extensions (iv) Relations between interaction and neutron removal cross sections ( mb ) at 790 MeV/A sI A + 12C s -2n 796 m 6 1060m 10 503m 5 722m 5 817m 6 9Li 11Li 4He 6He s -4n sI (A=C+xn) = sI (C) + s-xn Strong evidence for the well defined clusterization into the core and two neutrons 220m 40 189m14 202m17 95m 5 Tanihata I. et al. PRL, 55 (1987) 2670; PL, B289 (1992) 263 (v) Electromagnetic dissociation cross sections per unit charge are orders of magnitude halo larger than for stable nuclei 11 100 6 Li He He 14 11 Be Be 12 10 EMD 1 0.1 Evidence for a rather large difference between charge and mass centers in a body fixed frame 8 2 S-2n / Zp EMD 2 S-n / Zp Be 9 Li concentration of the dipole strength at low excitation energies 12 C 1 10 Separation energy (MeV) stable Zp-normalized EMD cross section (mb) 8He T. Kobayashi, Proc. 1st Int. Conf. On Radiactive Nuclear Beams, 1990. (peculiarities of low energy halo continuum) 100 0 0 Ng 10 20 Ex ( MeV ) soft DR 30 normal GDR specific nuclear property of extremely neutron-rich nuclei s EMD N ( EX ) s g ( EX ) dEX s g ( EX ) dB(E1) / dEx ( e 2 fm 2 / MeV ) 200 E1 strength ( arbitrary ) Virtual photon Intensity ( MeV ) -1 Large EMD cross sections 16 3 9 c EX dB ( E1) dE X 11Li 0.6 M. Zinser et al., Nucl. Phys. A619 (1997) 151 0.2 0 1 2 3 4 Ex ( MeV ) Ex ~ 1 MeV ~ 20 MeV excitations of soft modes with different multipolarity collective excitations versus direct transition from weakly bound to continuum states (vi) Ground state properties of 11Li and 9Li : 9Li 11Li Spin J : 3/2 3/2 quadrupole moments : -27.4 m 1.0 mb -31.2 m 4.5 m magnetic moments : 3.4391 m 0.0006 n.m. 3.6678 m 0.0025 n.m. Schmidt limit : 3.71 n.m. Previous peculiarities cannot arise from large deformations core is not significantly perturbed by the two valence neutrons 3.0 Nuclear charge radii by laser spectroccopy 2.8 11 Li 2.4 9 Li R. Sanches et al., PRL 96 (2006) 033002 L.B. Wang et al., PRL 93 (2004) 142501 Li 2.2 1 2 <r 2 > ch 1/2 (fm) 6 2.6 2.0 1.8 6 4 He He 1.6 C 4 6 8 A 10 12 (vii) The three-body system 11Li (9Li + n + n) is Borromean : neither the two neutron nor the core-neutron subsytems are bound Three-body correlations are the most important: due to them the system becomes bound. The Borromean rings, the heraldic symbol of the Princes of Borromeo, are carved in the stone of their castle in Lake Maggiore in northern Italy. N / Z ~ 0.6 - 4 eS ~ 0 - 40 MeV N / Z ~ 1 - 1.5 eS ~ 6 - 8 MeV r0 ~ 0.16 fm -3 proton and neutrons homogeneously mixed, no decoupling of proton and neutron distributions p E* - Sn ( MeV ) 9 10 11 decoupling of proton and neutron distributions neutron halos and neutron skins p n 12 He Li Be B 13 C 14 N 15 n Prerequisite of the halo formation : O low angular momentum motion for halo particles and few-body dynamics 0 -4 + -8 1/2 -12 1/2 2 3 4 5 6 7 8 Atomic Number Z - 9 1s - intruder level parity inversion of g.s. g.s. : Peculiarities of halo in ground state in low-energy continuum weakly bound, with large extension and space granularity concentration of the transition strength near break up threshold - soft modes elastic scattering some inclusive observables (reaction cross sections, … ) x r1 y rC r2 rj j nuclear reactions (transition properties) Decoupling of halo and nuclear core degrees of freedom BASIC dynamics of halo nuclei ( r1 , ) ( ,rA C , ) ( ) , ΑC x ,y 1 xC 2 yC xC r1 - r2 , C yC rC - 3 r xi xC2 yi yC2 A i ( ri - R ) i =1 2 y1 x1 C r1C xi xi r sini , 2 yi yi r cosi Volume element in the 6-dimensional space d xi d yi xi2 d xi yi2d yi d xi d y i 1 ( ) x C V - basis 1 3 A i A j ( ri - rj ) A i> j=1 xC , 0 C y 2 C r is the rotation, translation and permutation invariant variable 2 r2C 2 C, xC , xC , yC , yC C arctan Y - basis 1 A A1 + A2 AC ) A1r1 A 2 r2 1 , R ( A1r1 A 2 r2 A C rC ) A1 + A 2 A The hyperspherical coordnates : r, T - basis 1 The T-set of Jacobin coordinates ( A i m i / m, 1 ( ) x y 3/2 3/2 r 5 d r d i5 y r 5 d r sin 2 i cos 2 i d i d xi d yi The kinetic energy operator T has the separable form 2 2 1 2 5 1 1 2 i Ty - 2 K ( 5 ) 6 x 2 2m x y 2m r r r r 2m 2 K 2 ( ) is a square of the 6-dimensional hyperorbital momentum K ( ) - 4cot ( ) l ( x) l ( y) sin cos i 5 2 2 i 5 2 2 Eigenfunctions of 2 2 6 are the homogeneous harmonic polynomials ( ) = 0 ( ) - K ( K 4) Φ l m , l m ( ) = 0 6 PK ( x, y ) = 6 r K ΦKx l mx , ly my K l mx , ly my ΦKx 2 2 i 5 x x y i 5 y K i 5 ( ) are hyperspherical harmonics or K-harmonics. i 5 They give a complete set of orthogonal functions in the 6-dimensional space on unit hypersphere Pn( ,b () ly 2n ) 1 1 lx , ly 2 2 1 K - lx - l y 2 ( ) (sin ) (cos ) P ( ) (cos 2 ) ) ( z ) are the Jacobi polynomials, Y ( x ) are the spherical harmonics lx mx , ly my ΦK ( K lx ( ) N i 5 lx ly K lx Ylx mx x Yly my y lm ly The functions with fixed total orbital moment L lx ly ΦKxL My ( i5 ) l ,l (l m ,m x x x mx l y my L M ) ΦK l mx , ly my y l ly N Kx a normalizing coefficient ( ) i 5 is defined by the relation i i i x y x y d Φ Φ ( ) ( 5 K' L' M' 5 K L M 5 ) K K' L L' M M' lx lx' ly ly' l ', l ' * l ,l + (positive), if K – even - (negative), if K - odd The parity of HH depends only on K lx ly 2n The three equivalent sets of Jacobi coordinates are connected by transformation (kinematic rotation) x x j - cos ji x xi - sin ji y yi j i i y j y j sin ji xi xi - cos ji yi yi ji ji ( A 1 , A 2 , A C ) Quantum numbers K, L, M don’t change under a kinematic rotation. HH are transformed in a simple way and the parity is also conserved. lx , l y i ΦK Li M ( i5 ) l ,l xk yk lx , l y k lx , l y lx , l y K L ΦK Lk M k k i i Reynal-Revai coefficients ( ) k 5 The three-body bound-state and continuum wave functions (within cluster representation) J M C ( C )J M ( x , y ) exp i ( P R ) / ( 2 ) The Schrodinger 3-body equation : 3/2 (T V - E )J M ( x , y ) 0 1 1 y x 2m x y and the interaction : V V r 12 V r 1C V r 2C 12 1C 2C where the kinetic energy operator : T - 2 ( ) ( ) ( ) The bound state wave function (E < 0 ) J M ( x , y ) r -5 / 2 L S K l X lY S M 1/2 S 1 1/2 l ,l χ KL Sl X lY ( r ) ΦKxL y ( i5 ) S JM - spin function of two nucleons 2 S MS The continuum wave function (E > 0 ) S' M' ( kx , ky , x , y ) (r ) S -5 / 2 g ,g' l ,l χ KL Sl X,L'lY ,S'K' l' X l'Y (, r ) ΦKxL y ( i5 ) S JM i K' ( L' M' L S' M' S J M ) ΦK'xL' l' , l'y k x2 k y2 1 ( ) i 5 2m E is the hypermomentum conjugated to r The HH expansion of the 6-dimensional plane wave exp i ( kx x + ky y ) ( 2 ) 3 (r ) 2 i K J K +2 (r ) ΦKxL l , ly g ( )Φ l , l ( ) i 5 x y* KL 5 Normalization condition for bound state wave function * d x d y J' M' ( x , y )J M ( x , y ) J J' M M' Normalization condition for continuum wave function * d x d y S' M' S ( k'x , k'y , x , y )S M S ( kx , ky , x , y ) S S' M S M'S ( k'x - kx ) ( k'y - ky ) S S' M S M'S ' ' ( ) ( 5 5 ) 5 After projecting onto the hyperangular part of the wave function the Schrodinger equation is reduced to a set of coupled equations 2 d 2 ( 1) 2 VK g , K g ( r ) - E χ K g ( r ) - VK g , K'g ' ( r ) χ K'g ' ( r ) 2 r K'g ' K g 2m d r where K + 3 / 2 and partial-wave coupling interactions ( ) ( ) ( ) VKg , K'g ' ( r ) ΦK g ( i5 ) V12 r 12 V1C r 1C V2C r 2C the boundary conditions: χ Kg ( r ) ΦK' g ' ( 5i ) r 1 r Κ 5/2 The asymptotic hyperradial behaviour of VK g , K'g ' (r) The simplest case : K K ', g g ', K 0 , l x 0, l y 0 two-body potentials : Vij Vjk Vki a square well, radius R 00 00 V00 ( r ) 3 d i5 Φ 000 ( i5 ) Vjk ( xi ) Φ 000 ( i5 ) /2 3 d sin cos Vjk ( r sin ) r 2 2 R /r 1 d 2 r 1 a general behaviour of three-body effective potential if the two-body potentials are short-range potentials r At r the system of differential equations is decoupled since effective potentials can be neglected 2 2m ( 1) d2 E χ Kg ( r ) 0 2 2 r dr if E < 0 χ K g ( r ) exp ( - r ) J M ( x , y ) if E > 0 χ K g , K'g ' ( r ) S M ( kx , ky , x , y ) S r H (-) K+2 (r ) K g , K'g ' 1 r 5/ 2 exp ( - r ) - S K g , K'g ' H K(+)+ 2 (r ) ( A sin (r ) B cos (r ) ) r 5/ 2 1 H K( +2) (r ) exp ( ir ) r 1 Correlation density for the ground state of P ( rnn , Rnn-C ) r R 2 nn 2 nn - C 6He 2 1 d nn dnn-C JM ( rnn , Rnn-C ) 2J + 1 M n rnn n R(nn)-C C cigar-like configuration dineutron configuration 1 1 2 3 a A 3 2 A* Study of halo structure events with undestroyed core peripheral reactions complex constituents a+A 1 + 2 + 3 + Agr , elastic ( 4-body ) 1 + 2 + 3 + A* , inelastic ( 4-bodies) Cross section 2 ) ( 2 s d k 1 d k 2d k C d k A* ( i - f ) ( Pi - Pf ) Tfi v i Reaction amplitude Tfi (prior representation) Tfi ( a ky C kf A -) ( kf , kx , ky ) ( V U , , p,t aA gr i p,t 1 kx gr 2 ( ) ( ) (k , k , k ) ) (k ) i halo ground state wave function target ground state wave function i( ) k i projectile-target motion - f x y distorted wave for relative exact scattering wave function Vp,t NN - interaction between projectile and target nucleons UaA optical potential in initial channel Reaction amplitude Tfi (prior representation) (-) Tfi (k , k , k ) V f x y p,t () - UaA , gr , i p,t (k ) i DW: low-energy halo excitations small kx & ky ; large ki & kf (no spectators, three-body continuum, full scale FSI ) -) ( ) k f , gr , ( FSI Tfi f( a A 1 2 3 A* -) ( kx,ky ) ( V , , pt gr i p,t ) (k ) i Kinematically complete experiments • sensitivity to 3-body correlations (halo) • selection of halo excitation energy • variety of observables • elastic & inelastic breakup Tfi f( -) ( k ) , f ( , gr -) (k , k ) V x y pt gr p,t Nuclear structure Transition densities (-) (k , k ) x y p Three-body models ( r1 , ) ( ) ( ) ,rA C , , ΑC x ,y y rC ( r - rp ) r rp YL ( rp ) s Sp J effective interactions ( NN & N-core ) Method of hyperspherical harmonics: 3-body bound and continuum states x r1 ( ) , , i( ) k i r2 rj j binding energy electromagnetic moments electromagnetic formfactors geometrical properties density distributions .. . . . . . no consistency with nuclear structure interactions Tfi f( -) ( ) k f , gr , ( -) ( kx,ky ) ( V , , pt gr i p,t ) (k ) i Reaction mechanism One-step process Distorted wave approach effective NN interactions Vpt distorted waves (k) complex, energy, density dependent optical potential free NN scattering nucleus-nucleus elastic scattering and reaction cross sections Halo scattering on nuclei 6 208 He + Pb E / A = 240 MeV/A E / A = 240 MeV 8 Pb - 1 50 + 2 0 + 0 2 4 6 8 6 4 2 no FSI + 2 - 1 + 0 0 0 E* ( MeV ) 1 2 En (MeV) 6 4 - + 2 1 2 + 0 0 2 4 6 E* ( MeV ) 4 - 1 no FSI 2 + 2 + 0 0 0 3 1 2 Enn (MeV) 6 3 12 He + C T. Aumann et al., Phys. Rev., C59 (1999) 1252. d s /dE (arb.units) d s /dE* (mb/MeV) 8 6 d s /dE nn (arb.units) 100 208 6 d s /dE n (arb.units) He + d s /dE n (arb.units) d s /dE* (mb/MeV) 6 6 no FSI 4 + 2 2 - 1 + 0 0 0 1 2 E (MeV) 3 no FSI 4 + 2 2 - 1 + 0 0 0 1 2 En (MeV) 3 n x θx C n n x y n n y x C C Y-system T-system Continuum Spectroscopy Two-body breakup Three-body breakup Excitation Energy E 2 k X2 /2 X E 2 k X2 /2X 2 kY2 /2Y Orbital angular momenta Yl X mX ( X ) Yl ( X ) Yl ( Y ) X Y LM L Spin of the fragments S1 SC SM N = 2n + l X S S1 S2 SC SM Hypermoment K = 2n + l X lY S ABC of the three-body correlations Permutation of identical particles must not produce an effect on observables. Manifestation depends on the coordinate system where correlations are defined. Y-system n n y x T-system n n x y Neutron permutation changes k X -k X ; XY - XY 1. Angular correlation is symmetric relative → XY no effect e e X /E , C k X kY ; e 1 - e XY XY no recoil: mC 1. Angular correlation → no effect 2. Energy correlation is approximately symmetric relative where y x C C 2. Energy correlation V-system n n ε = 1/2 E e X e Y , 0 e ABC of the three-body correlations n Energy correlations of elementary modes : 2+ excitations with the hypermoment K = 2 (1 -e ) Y system Tsystem l XT lYT L n (2, 0, 2, 0 ) ( 1, 1, 1, 1 ) (2, 0, 0, 2 ) (0, 2 ) (2, 0 ) ( 1, 1 ) l l l l Y Y X Y l XY lYY l XY lYY L n T T X Y KL 2 Y system 1 2 1 2 Y Y ( l x ,ly ) ( L, S , l Tx , l Ty ) 1: 2 : 3 : ly n y C T system Wph (e) W ph ( e ) e y 3 e (1 - e ) d e dE lx n x C 3 1 (2, 0) (1, 1) 1 (0, 2) 0 0 Y system Y system 3 2 Wph (e) W ph ( e ) dE d 2s n x (1, 1) 1 (0, 2) (1, 1) 1 (2, 0) 0 0 0.5 e 1 0 0 0.5 e 1 2 + Realistic calculations: mixing of configurations Wph ( Enn / E ) J =2 T system n 1 n x (2,0,0,2) y (2,0,2,0) (1,1,1,1) C 0 0.0 Wph ( ECn / E ) 2 0.5 For low-lying states : only a few elementary modes 1.0 Enn / E Y system n 1 y (2,0,1,1) x (1,1,1,1) (2,0,2,0) 0 0.0 0.5 n 6 C 1.0 ECn / E Quantum numbers : ( L, S , lx , ly ) Energy correlations for 2+ resonance in 6He He + 208 Pb E/A = 208 MeV n n x n 6 n y y x C C 2 2 0 < E < 1 MeV + 2 - 1 0 0.0 1 + 2 + 0 0.5 0 0.0 1.0 0.5 Enn / E W ( cosCn) W ( cosnn ) 1.0 0.5 0.5 + 2 - 0.0 -1 0 cos (nn) + 0 6 1.0 ECn / E 1.0 1 150 - 1 d s /dE* (mb/MeV) Wph ( ECn / E ) Wph ( Enn / E ) 0 < E < 1 MeV 1 Energy and angular fragment correlations + + 2 - 1 0 1 0.0 -1 0 0 cos (Cn) 1 208 Pb 100 50 0 1 + He + 2 2 + 0 1 + 3 - 4 E* (MeV) 5 6 7 n n x n n y y x C C 2 2 1 < E < 3 MeV Wph ( ECn / E ) Wph ( Enn / E ) 1 < E < 3 MeV 1 - 1 + 0 0 0.0 + 2 0.5 1.0 - 1 1 + 0 0 0.0 0.5 Enn / E 0.5 - 1 + 0.0 -1 ■ W ( cosCn) W ( cosnn ) 1.0 0.5 - 1 + 0 2 0 0 cos (nn) 1.0 ECn / E 1.0 + + 2 1 0.0 -1 + 2 0 1 cos (Cn) L.V. Chulkov et al., Nucl. Phys. A759, 23 (2005) n n x n n n n x n n y y x y C C 2 0 0.0 0.5 - 1 0 0.0 1.0 2 W ( cosCn) 1.0 - 1 0.5 + 2 0 cos (nn) - + 1 0.0 -1 - + 2 1 2 0 cos (Cn) 1 - 1 0 0.0 + + 0 0.5 0 0.0 1.0 0.5 1.0 0.5 0.5 - + 1 2 0.0 -1 1.0 ECn / E 0 cos (nn) - + 2 + 0 1 + 2 Enn / E + 0 1 1 1.0 0.5 0 + 6 < E < 9 MeV 0 1.0 ECn / E 1.0 W ( cosnn ) 0 + 0.5 Enn / E 0.0 -1 + 2 Wph ( ECn / E ) 2 1 Wph ( Enn / E ) 0 + C 6 < E < 9 MeV W ( cosnn ) Wph ( ECn / E ) Wph ( Enn / E ) 3 < E < 6 MeV - 1 C 2 3 < E < 6 MeV 1 x W ( cosCn) 2 + y 1 0.0 -1 1 + 0 0 cos (Cn) 1 Theoretical calculations ? Experimental data detector assume 4 -measurements of fragments m1V12 m2V22 mCVC2 E 2 2 2 E Inverse kinematics: V2 V1 VCM VC ECM forward focusing T. Aumann, Eur. Phys. J. A 26 (2005) 441 "The angular range for fragments and neutrons covered by the detectors corresponds to a 4 measurement of the breakup in the rest frame of the projectile for fragment neutron relative energies up to 5.5 MeV (at 500 MeV/nucleon beam energy)". CONCLUSIONS The remarkable discovery of new type of nuclear structure at driplines, HALO, have been made with radioactive nuclear beams. The theoretical description of dripline nuclei is an exciting challenge. The coupling between bound states and the continuum asks for a strong interplay between various aspects of nuclear structure and reaction theory. Development of new experimental techniques for production and /or detection of radioactive beams is the way to unexplored “ TERRA INCOGNITA “ Special thanks to B.V. Danilin & J.S. Vaagen