Sparse Factor Analysis for Learning Analytics Andrew Waters, Andrew Lan, Christoph Studer, Richard Baraniuk Rice University.
Download ReportTranscript Sparse Factor Analysis for Learning Analytics Andrew Waters, Andrew Lan, Christoph Studer, Richard Baraniuk Rice University.
Sparse Factor Analysis for Learning Analytics Andrew Waters, Andrew Lan, Christoph Studer, Richard Baraniuk Rice University Learning Challenges One-size-fits-all Inefficient, unpersonalized Poor access to high-quality materials ($) Slow feedback cycle Personalized Learning Adaptation – to each student’s background, context, abilities, goals Closed-loop – tools for instructors and students to monitor and track their progress Cognitively informed – leverage latest findings from the science of learning Automated – Do this automatically data Data (massive, rich, personal) Jointly Assess Students and Content Latent factor decomposition (K concepts): • • • • Which concepts interact with which questions How important is each concept for each question Which questions are easy / difficult How well have students mastered each concept Do this solely from binary Q/A (possibly incomplete) data Statistical Model Partially observed data Inverse link function (probit/logit) Intrinsic difficulty of Question i Concept mastery of Student j Concept weight for Question i Model Assumptions Model is grossly undetermined We make some reasonable assumptions to make it tractable: - low-dimensionality - questions depend on few concepts - non-negativity • SPARse Factor Analysis (SPARFA) model • We develop two algorithms to fit the SPARFA model to data SPARFA-M: Convex Optimization Maximize log-likelihood function • Use alternate optimization with FISTA [Beck & Teboulle ‘09] for each subproblem • Bi-convex: SPARFA-M provably converges to local minimum SPARFA-B: Bayesian Latent Model Use MCMC to sample posteriors C μ Z Y Efficient Gibbs’ Sampling Assume probit link function W Sparsity Priors: Key Posteriors: Ex: Math Test on Mechanical Turk -0.50 2.37 3.98 0.92 1.10 1.40 3 0.29 1.05 1.03 0.79 High School Level 0.45 1.26 -0.54 -0.04 34 questions 100 students 4 1.37 0.27 0.89 1.92 5 2.13 -0.81 0.87 0.82 1.40 0.56 SPARFA-M w/ 5 concepts 0.50 2 2.07 2.37 -0.46 1 -1.32 1.05 1.47 -1.42 1.62 -0.67 Visualize W, μ Tag Analysis Goal: Improve concept interpretability Link tags to concepts T1 C1 T2 C2 . . . . . . TM CK Algebra Test (Mechanical Turk) -0.50 2.37 3.98 0.92 1.10 1.40 3 0.29 1.05 34 questions, 100 students 1.03 0.79 0.45 1.26 -0.54 -0.04 4 1.37 0.27 0.89 1.92 5 2.13 -0.81 0.87 0.82 1.40 0.56 0.50 2 2.07 2.37 -0.46 1 -1.32 1.05 1.47 -1.42 1.62 -0.67 Concepts decomposed into relevant tags Synthetic Experiments Generate synthetic Q/A data, recover latent factors Performance Metrics: Compare SPARFA-M, SPARFA-B, and non-negative variant of K-SVD EW, N=100, K=5 0.5 m 0.75 0.75 Q=50 Q=200 Q=50 Q=100 Q=100 Q=200 Q=50 Q=100 Q=200 0.5 0.5 m 0.25 E K=5 Em,, N=100, N=100, K=5 E Em Q=50 Q=100 Q=200 EC EW 0.5 EC, N=100, K=5 0.25 0.25 0.25 0 MB K MB K MB K 0 MB K MB K MB K 00 MB BK K M M MB B KK M MBBKK Ex: Rice University Final Exam 7.64 7.64 3.48 0.71 7.64 7.64 7.64 3.07 2.83 Signal processing course 0.69 0.87 1 2.93 7.64 2.08 2.83 5 1.73 2.11 1.95 2.62 -2.64 1.64 2 2.07 7.64 2.49 -0.72 1.96 1.22 3 0.77 2.16 3.00 2.07 4 3.13 44 questions 15 students 100% observed data 3.48 7.64 3.48 3.27 3.48 0.02 7.64 3.48 3.00 3.00 -0.85 0.12 SPARFA-M, K=5 concepts Student Profile Student Profile: Student’s understanding of each Tag Average Student Profile on Rice Final Exam Student 1 Profile on Rice Final Exam SPARFA automatically decides which tags require remediation STEMscopes 0.08 1.82 -0.25 4.74 4.78 8th grade Earth Science 80 questions 145 students 0.34 1.08 0.16 0.66 2.14 0.77 1.41 5.04 2.68 1.70 0.84 1.37 1.03 0.01 1.33 1.51 1.00 -0.10 0.21 2.42 2.14 1.31 -0.25 5 1.56 1.14 -0.59 0.79 1.90 -0.10 2.14 0.83 -0.10 0.98 1 1.60 2.23 2.05 0.02 1.21 1.24 0.64 2.28 0.11 0.70 0.61 2.58 3 1.37 0.93 0.06 1.08 1.59 0.44 -1.10 0.56 4 0.00 1.25 2 1.31 1.53 2.52 -0.75 0.81 -1.32 2.19 2.16 0.22 0.81 1.28 1.06 -1.19 1.61 2.58 1.71 0.71 4.91 5.05 2.14 SPARFA-B: K=5 Concepts Highly incomplete data: only 13.5% observed STEMscopes – Posterior Stats Randomly selected students Single concept (Energy Generation) Student 7 and 28 seem similar: S7: 15/20 correct S28: 16/20 correct Very different posterior variance: Student 7: Student 28: Mix of easy/hard questions Only easy questions – cannot determine ability Conclusions • SPARFA model + algorithms fit structural model to student question/answer data – Concept mastery profile – Relations of questions to concepts – Intrinsic difficulty of questions SPARFA can be used to make automated feedback / learning decisions at large scale Go to www.sparfa.com