DANS CES MURS VOUÉS AUX MERVEILLES J’ACCUEILLE ET GARDE LES OUVRAGES DE LA MAIN PRODIGIEUSE DE L’ARTISTE ÉGALE ET RIVALE DE SA PENSÉE L’UNE.

Download Report

Transcript DANS CES MURS VOUÉS AUX MERVEILLES J’ACCUEILLE ET GARDE LES OUVRAGES DE LA MAIN PRODIGIEUSE DE L’ARTISTE ÉGALE ET RIVALE DE SA PENSÉE L’UNE.

DANS CES MURS VOUÉS AUX MERVEILLES
J’ACCUEILLE ET GARDE LES OUVRAGES
DE LA MAIN PRODIGIEUSE DE L’ARTISTE
ÉGALE ET RIVALE DE SA PENSÉE
L’UNE N’EST RIEN SANS L’AUTRE
(Paul Valéry, Palais Chaillot)
Guerino Mazzola
U Minnesota & Zürich
[email protected]
[email protected]
www.encyclospace.org
Mathematical Theory
of Gestures
in Music
LA VÉRITÉ
DU BEAU
DANS
LA MUSIQUE
Guerino Mazzola
•
Motivation
- performance - and music theory
- gestural music and painting
- French philosophy
- Embodied AI
•
Speculum
- the musical oniontology
- classification of global compositions and networks
•
Gestures
- categories of gestures
- hypergestures
- the Escher theorem and free jazz
•
Symbols
- homotopy
- gestoids
- finitely generated abelian groups and networks
•
Motivation
- performance - and music theory
- gestural music and painting
- French philosophy
- Embodied AI
•
Speculum
- the musical oniontology
- classification of global compositions and networks
•
Gestures
- categories of gestures
- hypergestures
- the Escher theorem and free jazz
•
Symbols
- homotopy
- gestoids
- finitely generated abelian groups and networks
Gestures in Performance Theory
Theodor W. Adorno
(„Zu einer Theorie der musikalischen
Reproduktion“ 1946):
Danach wäre die Aufgabe des Interpreten,
Noten so zu betrachen, bis sie dem
insistenten Blick in Originalmanuskripte
sich verwandeln; nicht aber als
Bilder der Seelenregung des Autors —
sie sind auch dies, aber nur akzidentiell —
sondern als die seismographischen Kurven,
die der Körper der Musik selber in seinen
gestischen Erschütterungen hinterlassen hat.
Gestures in Performance Theory
Jürgen Uhde & Renate Wieland
(„Forschendes Üben“ 2002):
Affekte waren ursprünglich ja
Handlungen, bezogen auf ein Objekt
draussen, im Prozess der Verinnerlichung
haben sie sich von ihrem Gegenstand
gelöst, aber immer noch sind sie bestimmt
von den Koordinaten des Raumes. (...) Es
gibt mithin etwas wie
gestische (Raum-)Koordinaten.
Musical Transformational Theory
David Lewin
(„Generalized Musical Intervals
and Transformations“ 1987):
If I am at s and wish to get to t,
what characteristic gesture
should I perform in order to
arrive there?
Music Theory
Robert S. Hatten
(„Interpreting Musical Gestures,
Topics, and Tropes“ 2004)
Given the importance of gesture
to interpretation, why do we not
have a comprehensive theory
of gesture in music?
Jazz
Cecil Taylor
The body is in no way supposed
to get involved in Western music.
I try to imitate on the piano the
leaps in space a dancer makes.
pitch
gestures
time
sound
events
h
instrumentalize
e
l
position
instrumentalinterface
√
thaw
Instruments/
playing action
Musical sound
score
Musical theory/
notation
analysis
Tellef Kvifte: Instruments and
the electronic Age.
Solum forlag, Oslo, 1988
Painting
Francis Bacon
The marks are made,
and you survey the
thing like you would a
sort of graph. And you
see within this graph
the possibilities of all
types of fact being
planted..
David Sylvester: Interview with Francis
Bacon: The Brutality of Fact.
Thames and Hudson, New York 1975
Gilles Deleuze (1925 - 1995):
Francis Bacon. La logique de la sensation.
Editions de la Différence, Paris 1981
„graph“  „diagramme“  „geste“
Charles Alunni (1951 -):
Ce n‘est pas la règle qui gouverne l‘action
diagrammatique, mais l‘action qui fait émerger la règle.
Jean Cavaillès (1903 - 1944):
Comprendre est attraper le geste et pouvoir continuer.
Embodied AI
Stumpy: AI Lab, U Zurich
Zur Anzeige w ird der QuickTime™
Dekompressor „YUV420 codec“
benötigt.
•
Motivation
- performance - and music theory
- gestural music and painting
- French philosophy
- Embodied AI
•
Speculum
- the musical oniontology
- classification of global compositions and networks
•
Gestures
- categories of gestures
- hypergestures
- the Escher theorem and free jazz
•
Symbols
- homotopy
- gestoids
- finitely generated abelian groups and networks
The Oniontology of Music
communication
Processes
Gestures
signs
Facts
facts
The category GloComA of global objective A-addressed compositions
has
objects KI, i.e., coverings of sets K by atlases I of local objective
A-addressed compositions with manifold gluing conditions
and manifold morphisms ff: KI LJ, including and
compatible with atlas morphisms f: I  J
II
V
IV
VI
I
VII
III
Theorem (global addressed geometric classification)
Let A = locally free of finite rank over commutative ring R
Consider the objective global compositions KI at A with (*):
• the chart modules R.Ki are locally free of finite rank
• the function modules G(Ki) are projective
There is a subscheme Jn* of a projective R-scheme of finite type
whose points w: Spec(S) Jn* parametrize the isomorphism
classes of objective global compositions at address SRA with (*).
processes
KI can be reconstructed from the
coefficient system of retracted functions on free global compositions
res*nG(KI)  nG(ADn*)
Fact: This construction is a special case of a local network.
Global compositions are classified by limits of powerset denotators.
3
7
Ÿ12
T4
T5.-1
Ÿ12
T11.-1
D
Ÿ12
2
T2
Ÿ12
4
A global network
Theorem
Given address A in Mod, we have a verification functor
|?|: ALfModred  AGlob
from the category ALfModred of reduced, A-addressed locally flat
global networks to the category AGlob of A-addressed global
compositions.
Corollary
There are non-interpretable global networks in ALfModred
Local and Global Limit Denotators and the
Classification of Global Compositions.
COLLOQUIUM ON MATHEMATHICAL MUSIC THEORY
H. Fripertinger, L. Reich (Eds.)
Grazer Math. Ber., ISSN 1016–7692 Bericht Nr. 347 (2005),
Global Networks in Computer Science?
http://www.encyclospace.org/talks/networks.ppt
Gesture Theory in Computer Music Research:
•
•
•
•
•
•
•
•
•
•
Frédéric Bevilacqua
Claude Cadoz
Antonio Camurri
Rolf Inge Godøy
Stefan Müller
Norbert Schnell
Koji Shibuya
McAgnus Todd
Marcelo Wanderley
etc.
QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.
Koji Shibuya‘s
Ryukoku
violin robot

•
facts: complete classification of
addressed global compositions

Mathematical Music Theory
•
processes: relative classification
of global networks via a
functor to global compositions

•
gestures: no mathematical theory
•
Motivation
- performance - and music theory
- gestural music and painting
- French philosophy
- Embodied AI
•
Speculum
- the musical oniontology
- classification of global compositions and networks
•
Gestures
- categories of gestures
- hypergestures
- the Escher theorem and free jazz
•
Symbols
- homotopy
- gestoids
- finitely generated abelian groups and networks
algebra compactifies gestures to symbolic formulas
rotation
Zur Anzeige w ird der QuickTime™
Dekompressor „Animation“
benötigt.
matrix equation
a11x+a12y+a13z = a
a21x+a22y+a23z = b
a31x+a32y+a33z = c
a11 a12 a13
a21 a22 a23
a31 a32 a33
x
a
y = b
z
c
„attempt at resuscitation“
Peter Gabriel: Symbolic formulas via digraphs = „quiver algebras“
S
T
RK
K
P
X
Q
T
RK = R[X]
polynomial algebra
mathematics of transformational theory
Graphs are only the „skeleton“ of gestures, the „flesh“ is missing.
?

morphism g: D  X
of digraphs withvalues in a
spatial digraph X of a topological space X
(= digraph of continuous curves in X)
(Local) Gesture =
body
skeleton
pitch
g
X
D
time
position
A gesture morphism u: g  h is a digraph morphism u,
such that there is a continuous map f: X  Y which
defines a commutative diagram:
D
g

X

u
E
f

h
Y
G(g, h)
category G of (local) gestures
Advantage: Digraphs have an inherent (intuitionistic) logic,
because the category of digraphs is a topos.
This is not only cheap, but free design!
A global gesture
(only bodies shown)
e = time
Z
 6(t)
Q u ic k T im e ™
a n d a T I F F ( Un c o m p r e s s e d )
Y
y
z
decom pr essor
a r e n e e d e d t o s e e t h is
p ic t u r e .
 5(t)
(t)
 4(t)
(t)
One hand 
product  =
123456
of 6 gestural curves
in space-time
(x,y,z;e) of piano
j = 1, 2, ... 5:
tips of fingers
 3(t)
(t)
xX
 1(t)
j = 6:
the carpus
 2(t)
(t)
1 = Ÿ
Zur Anzeige w ird der QuickTime™
Dekompressor „H.264“
benötigt.
Stefan Müller
Renate Wieland &
Jürgen Uhde:
Forschendes Üben
Die Klangberührung
ist das Ziel der
zusammenfassenden
Geste, der Anschlag ist
sozusagen
die Geste in der Geste.
pitch
tip space
real forms?
p
D
onset
position

Digraph(F, X
)=
„loop of loops “
knot
circle
topological space of (local) gestures of
of digraph F with values in a
spatial digraph  . Notation: F @X

X
ET-dance gesture
time
space
Zur Anzeige w ird der QuickTime™
Dekompressor „Animation“
benötigt.
space
hypergesture impossible!
g
E
h
morphism exists!
g
h
Gestural maps are particular continuous maps


(u,v): F @X
 G @Y
canonically induced by a pair of maps
u: G  F
(digraphs)
v: X  Y
(continuous)
The category HG = HG1 of hypergestures has
1) hypergestures as objects and
2) gestural maps as continuous maps.
The category HGn of n-fold hypergestures has
1) objects: n-fold hypergestures
g: Fn  Fn-1@
 ... F1@
X
2) (n-1)-fold gestural maps as continuous maps.
Have chain of successively refined gestural categories
G  HG = HG1  HG2 ... HGn  HGn+1 ...
which represent the granularity of gestural relations,
much as in differential geometry, where the categories of
n-times differentiable manifolds do.
E.g. gluing local gestures to global gestures
in quasi-anatomic joints
Proposition (Escher Theorem)
Given a topological space X, a sequence of digraphs
F1 , F2, ... Fn
and a permutation  of 1, 2,... n.
Then there is a homeomorphism



F1@
... Fn@X
 F(1)@... F (n)@X

h
g
k
Comprendre est
attraper le geste et
pouvoir continuer.
•
Motivation
- performance - and music theory
- gestural music and painting
- French philosophy
- Embodied AI
•
Speculum
- the musical oniontology
- classification of global compositions and networks
•
Gestures
- categories of gestures
- hypergestures
- the Escher theorem and free jazz
•
Symbols
- homotopy
- gestoids
- finitely generated abelian groups and networks
Gestoids: From Gestures to Symbols
homotopic
curves
X
X
0
0
1
1
0
1
composition
of homotopic
curves
is associative
The homotopy classes of curves of a gesture g
define the Gestoid Gg of a gesture g.
This consists of the linear combinations
n ancn
of homotopy classes cn of curves between given points x, y
of gesture g.
x
y
i—
1(X)  Ÿn ?
finitely generated abelian groups?
g:
Gg  ¬ 1(S1)
i
ei2t
1
X = S1
fundamental group
1(S1)  Ÿ
ei2nt
~ n
n an ei2nt
~ Fourier formula f(t) =  n an ei2nt
—
Fourier ballet
F
2F
Zur Anzeige w ird der QuickTime™
Dekompressor „Animation“
benötigt.
3F
4F
QED
action of Ÿn
S3
Zn
1(S3)  0
1
1(Ln,1)  Ÿn
Ln,1
gestures
=?
string theory of music