MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Mapped element geometries and shape functions: the isoparametric formulation.
Download ReportTranscript MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Mapped element geometries and shape functions: the isoparametric formulation.
MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Mapped element geometries and shape functions: the isoparametric formulation Reading assignment: Chapter 10.1-10.3, 10.6 + Lecture notes Summary: • Concept of isoparametric mapping • 1D isoparametric mapping • Element matrices and vectors in 1D • 2D isoparametric mapping : rectangular parent elements • 2D isoparametric mapping : triangular parent elements • Element matrices and vectors in 2D For complex geometries © 2002 Brooks/Cole Publishing / Thomson Learning™ General quadrilateral elements Elements with curved sides Consider a special 4-noded rectangle in its local coordinate system (s,t) t 2 1 1 1 Displacement interpolation u N1u1 N 2 u 2 N 3u3 N 4 u 4 1 s 1 3 4 v N1v1 N 2 v2 N 3 v3 N 4 v4 Shape functions in local coord system 1 N 1 ( s, t ) (1 s )(1 t ) 4 1 N 2 ( s, t ) (1 s )(1 t ) 4 1 N 3 ( s, t ) (1 s )(1 t ) 4 1 N 4 ( s, t ) (1 s )(1 t ) 4 Recall that N1 N 2 N 3 N 4 1 Rigid body modes N1 s1 N 2 s 2 N 3 s3 N 4 s 4 s N1t1 N 2 t 2 N 3t 3 N 4 t 4 t Constant strain states Goal is to map this element from local coords to a general t quadrilateral element in global coord system 2 t 2 1 1 x x ( s, t ) y 1 1 1 y y ( s, t ) 3 s s 1 s s ( x, y ) s 4 4 3 t t ( x, y ) x Local coordinate system Global coordinate system N1 (s, t ) N1 ( x, y) N1 (s, t ) N1 (s( x, y),t ( x, y)) N1 ( x, y) In the mapped coordinates, the shape functions need to satisfy 1. Kronecker delta property 1 at nodei Ni 0 at all other nodes Then 2. Polynomial completeness N i 1 i N x i i x i N i i yi y The relationship x N i ( s, t ) x i i y N i ( s, t ) y i i Provides the required mapping from the local coordinate system To the global coordinate system and is known as isoparametric mapping (s,t): isoparametric coordinates (x,y): global coordinates Examples t t 1 1 1 s 1 y x t s t 1 s 1 s y x 1D isoparametric mapping 3 noded (quadratic) element 1 3 1 2 1 Local (isoparametric) coordinates s 1 s N1 (s) 2 s 1 s N 2 (s) 2 N 3 ( s) 1 s 2 s x1 x3 x2 1 3 x 2 Isoparametric mapping 3 x N i ( s ) xi i 1 s1 s s1 s x x1 x 2 1 s 2 x3 2 2 NOTES 1. Given a point in the isoparametric coordinates, I can obtain the corresponding mapped point in the global coordinates using the isoparametric mapping equation s 1 s s 1 s x x1 x 2 1 s 2 x3 2 2 At s 1; x x1 At s 0; x x3 At s 1; x x2 Question x=? at s=0.5? 2. The shape functions themselves get mapped In the isoparametric coordinates (s) they are polynomials. In the global coordinates (x) they are in general nonpolynomials Lets consider the following numerical example x1 0; x2 6; x3 4 4 1 Isoparametric mapping x(s) x s 1 s 2 s 1 s x1 0 2 4 3s s 2 s 1 s 2 s 1 s 2 2 3 x 2 x2 1 s 2 x3 6 1 s2 4 Simple polynomial Inverse mapping s(x) s 3 25 4 x 2 Complicated function Now lets compute the shape functions in the global coordinates s1 s 2 1 3 25 4 x 3 25 4 x 1 2 2 2 1 10 x 2 25 4 x 2 N 2 ( x) N 2 (s) Now lets compute the shape functions in the global coordinates N2(x) N2(s) 1 3 1 2 1 1 4 s N2(s) is a simple polynomial s 1 s N 2 (s) 2 1 1 2 3 x 2 N2(x) is a complicated function N 2 ( x) 1 10 x 2 25 4 x 2 However, thanks to isoparametric mapping, we always ensure 1. Knonecker delta property 2. Rigid body and constant strain states Element matrices and vectors for a mapped 1D bar element 1 3 1 2 1 x s 1 3 2 Displacement interpolation u N1u1 N 2u2 N3u3 N d Strain-displacement relation Stress E E Bd dN dN du dN1 u1 2 u 2 3 u 3 B d dx dx dx dx dN1 dN2 dN3 The strain-displacement matrix B dx dx dx The only difference from before is that the shape functions are in the isoparametric coordinates s 1 s 2 s 1 s N 2 (s) 2 N 3 ( s) 1 s 2 N1 (s) We know the isoparametric mapping 3 x N i ( s ) xi i 1 And we will not try to obtain explicitly the inverse map. How to compute the B matrix? Using chain rule dNi ( s) dNi ( s) ds dx ds dx Do I know dN i ( s ) ? ds Do I know ds ? dx (*) 3 x N i ( s ) xi I know i 1 3 Hence dx dNi (s) xi J ( Jacobianof m apping) ds From (*) i 1 ds dNi ( s) dx 1 dNi ( s) J ds What does the Jacobian do? dx J ds Maps a differential element from the isoparametric coordinates to the global coordinates The strain-displacement matrix dN1 dN 2 dN3 B dx dx dx 1 dN1 dN 2 dN3 J ds ds ds For the 3-noded element dNi ( s) 2s 1 2s 1 J xi x1 x2 2sx3 ds 2 2 i 1 3 1 2s 1 2s 1 B 2s J 2 2 The element stiffness matrix x2 k EA B B dx T x1 1 EA B B Jds dx Jds T 1 NOTES 1. The integral on ANY element in the global coordinates in now an integral from -1 to 1 in the local coodinates 2. The jacobian is a function of ‘s’ in general and enters the integral. The specific form of ‘J’ is determined by the values of x1, x2 and x3. Gaussian quadrature is used to evaluate the stiffness matrix 3. In general B is a vector of rational functions in ‘s’ Isoparametric mapping in 2D: Rectangular parent elements © 2002 Brooks/Cole Publishing / Thomson Learning™ Parent element Isoparametric mapping Mapped element in global coordinates x N i ( s, t ) x i i y N i ( s, t ) y i i Shape functions of parent element in isoparametric coordinates 1 (1 s )(1 t ) 4 1 N 2 ( s, t ) (1 s )(1 t ) 4 1 N 3 ( s, t ) (1 s )(1 t ) 4 1 N 4 ( s, t ) (1 s )(1 t ) 4 N1 ( s, t ) Isoparametric mapping x N i ( s, t ) x i i y N i ( s, t ) y i i NOTES: 1. The isoparametric mapping provides the map (s,t) to (x,y) , i.e., if you are given a point (s,t) in isoparametric coordinates, then you can compute the coordinates of the point in the (x,y) coordinate system using the equations x N i ( s, t ) x i i y N i ( s, t ) y i i 2. The inverse map will never be explicitly computed. 8-noded Serendipity element © 2002 Brooks/Cole Publishing / Thomson Learning™ t 7 4 1 1 1 6 8 1 1 3 5 2 s 8-noded Serendipity element: element shape functions in isoparametric coordinates 1 1 N1 ( s, t ) (1 s )(1 t )( s t 1) N 5 ( s, t ) (1 t )(1 s)(1 s) 4 2 1 1 N 2 ( s, t ) (1 s )(1 t )( s t 1) N 6 ( s, t ) (1 t )(1 t )(1 s) 4 2 1 1 N 3 ( s, t ) (1 s )(1 t )( s t 1) N 7 ( s, t ) (1 t )(1 s)(1 s) 4 2 1 1 N 4 ( s, t ) (1 s )(1 t )( s t 1) N 8 ( s, t ) (1 s)(1 t )(1 t ) 4 2 NOTES 1. Ni(s,t) is a simple polynomial in s and t. But Ni(x,y) is a complex function of x and y. 2. The element edges can be curved in the mapped coordinates 3. A “midside” node in the parent element may not remain as a midside node in the mapped element. An extreme example t 5 2 1 1 1 8 6 1 3 7 y 1 4 s 2,6,3 1 5 8 7 x 4. Care must be taken to ensure UNIQUENESS of mapping 2 y t 2 1 1 1 1 3 s 1 3 4 4 1 x Isoparametric mapping in 2D: Triangular parent elements t 2 1 s 3 Parent element: a right angled triangles with arms of unit length Key is to link the isoparametric coordinates with the area coordinates P(s,t) t 1 1 1 2 t 2 s 2 1 (1 s t ) 2 s 123 P 31 P 23 P12 L1 P 23 s 123 L2 P 31 t 123 L3 P12 1 s t 123 Now replace L1, L2, L3 in the formulas for the shape functions of triangular elements to obtain the shape functions in terms of (s,t) Example: 3-noded triangle 2 t 2 (x2,y2) t 1 1 3 s 1 Parent shape functions y 3 (x3,y3) x 1 (x1,y1) s Isoparametric mapping N1 s x N1 (s, t ) x1 N 2 (s, t ) x2 N 3 ( s, t ) x3 N2 t y N1 ( s, t ) y1 N 2 (s, t ) y 2 N 3 (s, t ) y 3 N3 1 s t Element matrices and vectors for a mapped 2D element Recall: For each element Displacement approximation uNd Strain approximation ε Bd Stress approximation DB d k e B D B dV Element stiffness matrix T V Element nodal load vector f e N X dV e N T S dS V ST T f STe e T b f S In isoparametric formulation 1. Shape functions first expressed in (s,t) coordinate system i.e., Ni(s,t) 2. The isoparamtric mapping relates the (s,t) coordinates with the global coordinates (x,y) x N i ( s, t ) x i i y N i ( s, t ) y i i 3. It is laborious to find the inverse map s(x,y) and t(x,y) and we do not do that. Instead we compute the integrals in the domain of the parent element. NOTE 1. Ni(s,t) s are already available as simple polynomial functions 2. The first task is to find N i and N i y x Use chain rule N i ( x, y ) N i s x N i ( x, y ) N i t x N i x s y N i x t y y s y t In matrix form N i s N i t x s x t Can be computed N i s N i t y N i s x y N i t y This is known as the Jacobian matrix (J) for the mapping (s,t) → (x,y) N i x J N i y We want to compute these for the B matrix N i x N i y N i 1 s J N i t How to compute the Jacobian matrix? Start from x N ( s, t ) x i i i y N i ( s, t ) y i i N ( s, t ) N ( s, t ) x x i xi ; i xi s s t t i i N i ( s, t ) N i ( s, t ) y y yi ; yi s s t t i i x s J x t y s y t N i ( s, t ) xi s i N i ( s, t ) x i t i N i ( s, t ) yi s i N i ( s, t ) yi t i Need to ensure that det(J) > 0 for one-to-one mapping 3. Now we need to transform the integrals from (x,y) to (s,t) Case 1. Volume integrals 1 1 Ve f (s, t ) dV e f (s, t ) h dA f (s, t ) h det(J ) dsdt A 1 1 h=thickness of element This depends on the key result dA dxdy det(J ) dsdt Problem: Consider the following isoparamteric map 1 2 t (6,6) (3,6) 2 1 1 1 1 s 1 y 4 3 4 3 (3,1) (6,1) x ISOPARAMETRIC COORDINATES GLOBAL COORDINATES Displacement interpolation u N1u1 N 2 u 2 N 3u3 N 4 u 4 v N1v1 N 2 v2 N 3 v3 N 4 v4 Shape functions in isoparametric coord system 1 N 1 ( s, t ) (1 s )(1 t ) 4 1 N 2 ( s, t ) (1 s )(1 t ) 4 1 N 3 ( s, t ) (1 s )(1 t ) 4 1 N 4 ( s, t ) (1 s )(1 t ) 4 The isoparamtric map x N1 ( s, t ) x1 N 2 ( s, t ) x2 N 3 ( s, t ) x3 N 4 ( s, t ) x4 y N1 ( s, t ) y1 N 2 ( s, t ) y2 N 3 ( s, t ) y3 N 4 ( s, t ) y4 (1 s )(1 t ) (1 s )(1 t ) (1 s )(1 t ) (1 s )(1 t ) 6 3 3 6 4 4 4 4 3(1 s ) 2 (1 s )(1 t ) (1 s )(1 t ) (1 s )(1 t ) (1 s )(1 t ) y 6 6 1 1 4 4 4 4 7 5t 2 x In this case, we may compute the inverse map, but we will NOT do that! The Jacobian matrix y x s s J x y t t 3 0 2 5 0 2 3(1 s) 2 7 5t y 2 x since NOTE: The diagonal terms are due to stretching of the sides along the x-and ydirections. The off-diagonal terms are zero because the element does not shear. 2 / 3 J 1 0 0 2 / 5 and det( J ) 15 4 Hence, if I were to compute the first column of the B matrix along the positive x-direction N1 x B1 0 N 1 y I would use N1 N1 2 / 3 x 1 s J N 0 N 1 1 t y Hence N1 1 t x 6 B1 0 0 N 1 s 1 y 10 1 t 1 t 6 4 0 2 / 5 1 s 1 s 4 10 The element stiffness matrix k V B D B dV e T 1 1 1 1 BT D B det( J )hdsdt