Flow Cytometry Analysis for HIV/AIDS Immunology Ontologies and Their Applications in Processing Clinical Data June 11-13, Buffalo, NY Director, Biostatistics and Computational Core, Duke CFAR.
Download ReportTranscript Flow Cytometry Analysis for HIV/AIDS Immunology Ontologies and Their Applications in Processing Clinical Data June 11-13, Buffalo, NY Director, Biostatistics and Computational Core, Duke CFAR.
Flow Cytometry Analysis for HIV/AIDS Immunology Ontologies and Their Applications in Processing Clinical Data June 11-13, Buffalo, NY Director, Biostatistics and Computational Core, Duke CFAR Overview • • • • • Basics of flow cytometry (optional) Applications of flow cytometry for HIV/AIDS Automated analysis Potential for ontology contributions Marriage of automated analysis and use of ontologies (to be continued by Ryan and Nikesh) Duke Human Immune Profiling • 1989-1994; Duke Center for AIDS Research (CFAR) Flow Cytometry Core • 1991-2000; Central Immunology Laboratory for the AIDS Vaccine Evaluation Group (AVEG) • 2000-2005; Central Laboratory for the HIV Vaccine Trials Network (HVTN) • 2001-2004; Creation of a GCLP-Compliant Immune Monitoring Environment • 2006-2011; Duke Central Laboratory for the HVTN • 2005-2015; Duke Center for AIDS Research (CFAR) Flow Cytometry Core • 2005-2012; Center for HIV/AIDS Vaccine Immunology (CHAVI) Immune Monitoring Core • 2006-2011; Duke Translational Research Institute (DTRI) Immune Monitoring Core • 2011-present; Formation of the CFAR/DTRI Immune Profiling Core • 2010-2017; External Quality Assurance Program Oversight Laboratory (EQAPOL) ICS/Polychromatic Flow Cytometry Component FLOW APPLICATIONS IN HIV/AIDS Applications in HIV/AIDS • Clinical – CD45/CD4 for monitoring HIV+ patients on ART – CD8/CD38 for monitoring ART compliance • Cheaper supplement to VL assays • Research (drugs, vaccines, pathogenesis) – – – – – – – – – Immunophenotyping (T, B, DC, NK, NKT) Memory/Maturation Cellular Function (cytokines, cytotoxicity, Ab production) Proliferative capacity (CFSE) Cell death (specific and non-specific assays) Antigen-specificity (peptide pool stimulation, multimers) Co-receptor usage Signaling (PhosFlow) Subcellular localization and conjugates (imaging cytometers) • Cell sorting (FACS) Immunophenotyping – basic T subsets Basic Gates: - 3 total Ungated Singlets SSC-A SSC-A FSC-H FSC-H <Violet H-A>: vAmine CD14PB CD19 PB Exclusion (Violet H) 88.3 CD3+ Exclusion- 99.3 41.4 FSC-W FSC-A <Violet G-A>: CD3 Amcyan FSC-W CD3 AmCyan FSC-A Scatter CD4+CD8- CD4 PerCP-Cy5.5 <G710-A>: CD4 CY55PE 57.8 0.79 CD4+CD8+ 36.3 CD8+CD4- <V705-A>: CD8 Q705 CD8 Alexa700 Duke University Medical Center Immunophenotyping (B cells) Naive/Memory CD38-/IgD+ (CD23+/-/CD27+/-) <Green E-A>: IgD PE 105 Naïve CD38+/IgD+ 38-D+ 17.3 Transitional CD38++/IgD+ (CD23+/CD27-) 38+D+ 79.5 104 38++D+ 0.94 103 102 38++D0.064 0 38-D1.11 38+D1.69 2 3 4 0 10 10 10 10 <Red B-A>: CD38 A700 Early Memory Plasmablasts Memory CD38+/IgDCD38++/IgDCD38-/IgD(CD23-/CD27+) 5 Maturation/Memory (CD8) ANTIGEN Naive CM EM E TE CD45ROCD27+ CD45RO+ CD27+ CD45RO+ CD27- CD45RO+ CD57+ CD45ROCD57+ Proliferative Capacity Effector Function Maturation/Memory Maturational Gates: - 5 per basic subset CD45RO ECD 3.98 EM 11.7 TE E CD8+CD4- 22.9 28.6 56.4 21.5 51.7 CD45RO ECD N 6.55 EM 8.46 13.2 5.67 CM TE <V545-A>: CD57 Q545 55.9 CM 3.98 CD57 FITC 42.9 N 62.5 CD27 APC-Alexa750 <G660-A>: CD27 CY5PE 2.58 22 <V545-A>: CD57 Q545 EM E CD57 FITC 0.33 TE <G660-A>: CD27 CY5PE CM CD4+CD8+ 1.07 0.12 CD27 APC-Alexa750 N <V545-A>: CD57 Q545 54.1 43 CD57 FITC <G660-A>: CD27 CY5PE CD27 APC-Alexa750 CD4+CD8- 56.9 E 24.2 CD45RO ECD Central Effector Terminal Naive Memory Memory Effector Effector Central Effector Terminal Naive Memory Memory Effector Effector Central Effector Terminal Naive Memory Memory Effector Effector Duke University Medical Center Functional Assays (ICS) 2. Stimulate 3. Surface Stain 4. Lyse/Fix 5. Permeabilize 6. IC Stain 7. Acquisition 8. Analysis Brefeldin Monensin 6 hrs Rest 6h CD107 cytokine lymphocyte erythrocyte Wash Wash Wash Wash TNFα Alexa700 1. Thaw IFN-γ PE-Cy7 Functional T subsets 7+g+2+T+ Polyfunctional (1: ++++) Functional & Boolean Gates: - 4 functional gates per maturational subset - 16 boolean gates per maturational subset CM: CD8+CD4- CD107 2.59 <R710-A>: CD107a AX680 IFN- 4.19 IL-2 TNF- 0.31 Boolean Gates Key: 7 = CD107 g = IFN- 2 = IL-2 T = TNF- 7+g+2+T7+g+2-T+ 7+g-2+T+ 7-g+2+T+ Polyfunctional (4: +++) 7+g+2-T7+g-2+T7+g-2-T+ 7-g+2+T7-g+2-T+ 7-g-2+T+ Bifunctional (6: ++) 7+g-2-T7-g+2-T7-g-2+T7-g-2-T+ Monofunctional (4: +) 7-g-2-T- Nonfunctional (1: ----) 1.14 Boolean Gating Combinatorics Proliferation Assays Tetramers AUTOMATED ANALYSIS Automated Analysis • Several groups pursuing possibility of automated flow analysis • Many approaches within large family of – Statistical learning methods – Machine learning methods • Typical pipeline for automated analysis – Data pre-processing QA/QC Event labeling (“clustering”) Subset alignment Subset labeling Automated summaries and manual review QA/QC • Flag potential errors – (1) Too few events – (2) Flow stream inconsistencies – (3) Medians outside 95% bootstrap CI for lab – (4) Excessive censoring (% events in min or max bin for marker channel) 1 2 3 4 New hierarchical DP model improves subset alignment and detection of rare cell subsets by borrowing strength across samples Standard Reference Pooled Hierarchical Correct enumeration and labeling of rare event cluster in simulation FSC CD45 CD8 TET CD8 SSC SSC Hierarchical DP results in cell subset alignment, more consistent clustering and eliminates false positive events that arise with standard DP clustering CD8 Spiked tetramer data analysis HDPGMM TET DPGMM FSC CD45 CD8 Marker usefulness, equivalence, redundancy EQAPOL program • Flow analysis of same sample may give very different results in different centers • EQAPOL program sponsored by NIAID to standardize approach (mandatory for centers conducting NIH-funded HIV research) • Automated analysis component to EQAPOL program introduced for first 4C sendout • Plan calls for 4C 7C 12C ICS sendouts • Room to integrate an HIV immune ontology? Manual/Automated comparison of cytokine+ve CD4 from EQAPOL sendout #1 POTENTIAL FOR ONTOLOGY CONTRIBUTIONS TO FLOW Ambiguities in flow analysis • • • • • • What markers define a subset? How many subsets? Dynamic changes Context dependence Higher order relationships Standardization/Harmonization of assays – Standardized panels are not the complete answer – even with lyophilized reagents and prescribed SOPs, we still get significant site-to-site variability Types of “markers” • Physical characteristics – FSC, SSC • Non-specific reporters – Viability stains, CFSE (or PKH26, SNARF) • • • • • Cell surface molecules (e.g. CD3, CD4, CD8) Intracellular molecules (e.g. TNFa, IL-2, IFNg) Intranuclear molecules (e.g. FoxP3) Activation targets (e.g. PhosFlow) Other features (e.g. imaging cytometers) Marker equivalence? CD45RO and CD45RA 10 5 10 4 10 3 10 2 105 150K 100K 50K <Red B-A>: CD8 A700 FSC-H 76 <Violet H-A>: vAmine 200K 105 <Green D-A>: CD45RO ECD 250K 104 103 4 10 3 10 2 0.38 0 0 0 58 0 0 Ungated 10 50K 100K 150K 200K 250K FSC-W CD3+vAmineSinglets CD4+ <Red A-A>, <Green D-A> s… 0 2 3 4 54.6 5 10 10 10 10 <Violet G-A>: CD3 AmCyan Singlets Singlets CD4+ CD3+vAmine<Red A-A>, <Green D-A> s… 3 4 5 0 10 10 10 <Blue A-A>: CD4 PerCP_Cy5 5 Singlets Singlets CD3+vAmineCD3+vAmine<Red A-A>, <Green D-A> s… CD4+ 3 4 5 0 10 10 10 <Red A-A>: CD45RA APC_H7 Singlets CD3+vAmineCD4+ <Red A-A>, <Green D-A> s… Definition and number of cell subsets • More markers = more subsets • Especially true with unbiased statistical/machine learning approaches – Can often find several discrete clusters of events that have no obvious biological label • The “same” cell type may have multiple alternative phenotypic characterizations (e.g. memory T cells – various combinations of CD45RA, CD45RO, CD27, CD57, CCR7, CD62L, Bcl2, Ki67 used in human studies; CD28, CD95 used in NHP studies) Haddad, and R. P. Sékaly 105 105 CD4 10 CCR7 104 CD3+CD4+ 4 103 3 10 Transitional memory cells Supplementary Figure 1. Gating strategy and quantification of integrated HIV DNA in sorted CD4+ T-cell subsets. 103 103 CCR7 CD4 104 105 CD27 Naïve (TN ) 10 4 CD45RA +CCR7+CD27+ 10 3 104 105 CD45RA b Integrated HIV DNA copies per 1X106 cells CD3 10 5 -CD27+ Subject CD45RA -CCR7 CD45RA-CCR7- Count 103 104 104 10,000 1,000 100 10 3 4 6 11 14 17 Sorted on CD45RA and CCR7 2 5 7 8 4 6 11 Supplementary Figure 1. Gating CD4+ T-cell subsets. (a) CD4+ indicated inTNthe figure by polychro expression Tof CM CD45RA, CCR7 a + TTM CCR7-CD27 ) and TEM (CD45R -T + (CD45RA CCR7 CD27+). PBMC EM individual T isTDshown. (b) Frequenci TTM+EM subjects. Results from 17 aviremic subset. 100,000 1 3 CD45RA -CCR7-CD27105 CD27 1 1 Sorted Effector Memory (TEM ) on CD45RA a 10 3 Subject 100 Transitionnal memory (TTM ) 1 CD45RA +CCR7-CD2710 3 10,000 10 Terminally Differentiated (TTD ) 103 100,000 1,000 + CD45RA -CCR7+CD27 10 5 CD3+CD4+ CD4 Central Memory (TCM ) Count CD45RA-CCR7+ Integrated HIV DNA copies per 1X106 cells b 104 103 105 CD3 a 105 104 9 10 12 13 15 16 Sorted on CD45RA, CCR7 and CD27 Nature Medicine: doi:10.1038/nm.1972 Supplementary Figure 1. Gating strategy and quantification of integrated HIV DNA in sorted 3 cytokines versus 1 or 2 cytokines Dynamic changes • Definition of a viable cell – Depending on what method is used, may get very different numbers – Matters because • Non-viable cells non-specific binding FP++ • Cell death is the object of study – PI, EMA, amine, anti-caspase 3 … – Detect different stages of cell death • Down-regulation of receptors – CD3 following antigenic stimulation – MHC following HIV infection Changes with activation Changes with Proliferation Non-proliferating lymphocytes Proliferating lymphocytes SSH CFSE Proliferating lymphocytes Non-proliferating lymphocytes CD4 FSC Context dependence • Stimulation conditions – SEB, Costim, specific peptide pools (e.g. IE1 and pp65 CMV pools), mitogens – Time of assay (minutes in Phosflow, hours to days for cytokine expression, weeks to months for vaccine studies) • Fresh or frozen? – Some receptors are labile and unstable under cryopreservation e.g. CCR7 – Cannot use Sekaly gating strategy to identify transitional memory cells with cryopreserved samples Fresh vs Cryo CD4 Subsets 69.3 CD4+ cCBn_FS 1.fcs 28.4 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 98.5 <Red C-A>: CD27 APC 68 <Green E-A>: CD62L PE 57.8 99.8 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.26 SSC-A SSC-A CD4+ fCBn_FS 1.fcs <Blue B-A>: CD57 FITC 98.6 <Red C-A>: CD27 APC 68.1 <Green E-A>: CD62L PE 58.9 99.9 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.26 SSC-A SSC-A 28.3 98.6 <Red C-A>: CD27 APC 68.2 <Green E-A>: CD62L PE 58.9 99.9 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.27 SSC-A SSC-A 28.6 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 31 99.5 <Red C-A>: CD27 APC 86.5 <Green E-A>: CD62L PE 64 100 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 1.91 SSC-A SSC-A 29.8 28.4 <Red A-A>: CD45RA APC_H7 67.3 32 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 <Blue B-A>: CD57 FITC 99.7 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.23 <Blue B-A>: CD57 FITC 98.2 <Red C-A>: CD27 APC 78.3 <Green E-A>: CD62L PE 58.4 99.8 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.24 <Blue B-A>: CD57 FITC 98 <Red C-A>: CD27 APC 77.7 <Green E-A>: CD62L PE 57.4 99.7 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 0.24 <Blue B-A>: CD57 FITC 99.3 <Red C-A>: CD27 APC 89.1 <Green E-A>: CD62L PE 58 99.9 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 1.92 <Blue B-A>: CD57 FITC CD4+ 31 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 99.6 <Red C-A>: CD27 APC 86.7 <Green E-A>: CD62L PE 64.4 100 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 1.93 SSC-A SSC-A 68.4 <Green D-A>: CD45RO ECD <Blue B-A>: CD57 FITC CD4+ 70.1 29.3 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 <Blue B-A>: CD57 FITC CD4+ 99.3 <Red C-A>: CD27 APC 89 <Green E-A>: CD62L PE 57.4 99.9 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 2.03 <Blue B-A>: CD57 FITC CD4+ 31.1 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 99.6 <Red C-A>: CD27 APC 86.8 <Green E-A>: CD62L PE 62.6 100 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 1.82 <Blue B-A>: CD57 FITC SSC-A SSC-A <Green E-A>: CD62L PE 57.9 CD4+ c701082556h_FS 1.fcs <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 72.4 <Red C-A>: CD27 APC 77.9 CD4+ CD4+ f701082556h_FS 1.fcs 72.9 67 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 <Blue B-A>: CD57 FITC CD4+ 72.9 98.1 CD4+ <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 69.4 28.9 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 CD4+ 69.7 67.5 67 32 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA APC_H7 99.3 <Red C-A>: CD27 APC 89.2 <Green E-A>: CD62L PE 57.7 99.9 <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 2.04 <Blue B-A>: CD57 FITC <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Green A-A>: CD197 PE_Cy7 <Red A-A>: CD45RA APC_H7 <Green D-A>: CD45RO ECD <Green E-A>: CD62L PE <Green E-A>: CD62L PE <Blue B-A>: CD57 FITC <Blue B-A>: CD57 FITC <Red C-A>: CD27 APC <Red C-A>: CD27 APC EM <Green C-A>: CD28 PE_Cy5 <Green D-A>: CD45RO ECD CM <Red A-A>: CD45RA APC_H7 <Red C-A>: CD27 APC 0.039 <Green C-A>: CD28 PE_Cy5 <Blue B-A>: CD57 FITC N <Green E-A>: CD62L PE <Green D-A>: CD45RO ECD <Green D-A>: CD45RO ECD 2.06 <Blue B-A>: CD57 FITC 61.2 <Red A-A>: CD45RA APC_H7 <Red C-A>: CD27 APC <Red C-A>: CD27 APC 27.1 <Green C-A>: CD28 PE_Cy5 <Blue B-A>: CD57 FITC <Red C-A>: CD27 APC TE <Green E-A>: CD62L PE <Blue B-A>: CD57 FITC <Red C-A>: CD27 APC <Green D-A>: CD45RO ECD <Green D-A>: CD45RO ECD <Green E-A>: CD62L PE <Blue B-A>: CD57 FITC 0.17 <Red A-A>: CD45RA APC_H7 <Green D-A>: CD45RO ECD <Green E-A>: CD62L PE <Red C-A>: CD27 APC <Blue B-A>: CD57 FITC fCBn_FS 1.fcs <Green C-A>: CD28 PE_Cy5 <Red A-A>: CD45RA APC_H7 <Green D-A>: CD45RO ECD <Blue B-A>: CD57 FITC E <Green C-A>: CD28 PE_Cy5 <Red A-A>: CD45RA APC_H7 <Green E-A>: CD62L PE EM <Green C-A>: CD28 PE_Cy5 <Green D-A>: CD45RO ECD CM <Red A-A>: CD45RA APC_H7 <Red C-A>: CD27 APC 3.97e-3 <Green C-A>: CD28 PE_Cy5 <Red C-A>: CD27 APC <Red C-A>: CD27 APC <Red C-A>: CD27 APC N <Blue B-A>: CD57 FITC <Blue B-A>: CD57 FITC <Blue B-A>: CD57 FITC 4.59 <Green E-A>: CD62L PE <Green E-A>: CD62L PE <Green E-A>: CD62L PE <Green D-A>: CD45RO ECD <Green D-A>: CD45RO ECD <Green D-A>: CD45RO ECD <Green D-A>: CD45RO ECD 57.3 <Red A-A>: CD45RA APC_H7 <Red A-A>: CD45RA APC_H7 <Red A-A>: CD45RA APC_H7 30.5 <Green C-A>: CD28 PE_Cy5 <Green C-A>: CD28 PE_Cy5 <Green C-A>: CD28 PE_Cy5 Normal vs HIV+: CD4 maturational subsets 197 vs 27, 57, 62L, 197, RA, 28 f701082556h_FS 1.fcs 1.18 <Green D-A>: CD45RO ECD E <Green A-A>: CD197 PE_Cy7 TE <Green A-A>: CD197 PE_Cy7 CD4+ Fresh Cryopreserved c701082556h_FS 1.fcs 31 67.3 68 98.1 99.5 32 77.9 57.8 99.3 86.5 Fresh 99.8 57.9 64 89.1 CD197 (CCR7) CD4+ Cryopreserved cCBn_ 0.26 99.7 100 58 SSC-A s CD62L 67.5 0.23 APC <Green E-A>: CD62L PEC-A>: <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 <Blue B-A>:C-A>: CD57 FITC <Green D-A>: CD45 RA APC_H7 <Red C-A>: CD27 APC <Green E-A>: CD62L PE <Green A-A>: CD197 PE_Cy7 <Green CD28 PE_Cy5 <Blue B-A>:<Blue CD5 A-A>: CD45RA APC_H7 <Red CD27 APCAPC_H7 <Green E-A>: CD62L PEAPC <Green A-A>: CD197 PE_Cy7 C-A>: CD28 PE_Cy5 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA <Red C-A>: CD27 <Green E-A>: CD62L PE<Green <Green A-A>: CD197 PE_Cy7 <Gr CD4+ CD4+ 99.6 29.3 78.3 58.9 99.3 86.7 99.9 58.4 64.489 0.26 99.8 10057.4 SSC-A 31 70.1 98.2 68.1 0.2467 <Green D-A>: CD45 APC <Green E-A>: CD62L PEC-A>: <Green A-A>: CD197 PE_Cy7 <Green C-A>: CD28 PE_Cy5 <Blue B-A>:C-A>: CD57 FITC RA APC_H7 <Red C-A>: CD27 APC <Green E-A>: CD62L PE <Green A-A>: CD197 PE_Cy7 <Green CD28 PE_Cy5 <Blue B-A>:<Blue CD5 A-A>: CD45RA APC_H7 <Red CD27 APCAPC_H7 <Green E-A>: CD62L PEAPC <Green A-A>: CD197 PE_Cy7 C-A>: CD28 PE_Cy5 <Green D-A>: CD45RO ECD <Red A-A>: CD45RA <Red C-A>: CD27 <Green E-A>: CD62L PE<Green <Green A-A>: CD197 PE_Cy7 <Gr CD4+ CD4+ 68.298 67 99.6 32 58.9 77.7 86.8 99.3 99.9 57.4 62.6 89.2 0.27 99.7 100 57.7 SSC-A 31.1 68.4 0.24 APC <Green<Red E-A>: CD62L PE APC <Green A-A>: CD197 PE_Cy7 <Green C-A>:A-A>: CD28 CD197 PE_Cy5PE_Cy7 <Blue B-A>:C-A>: CD57 CD28 FITC PE_Cy5 <Green RA APC_H7 C-A>: CD27 <Green E-A>: CD62L PE <Green <Green <BlueD-A>: B-A>:CD45 CD5 A-A>: CD45RA APC_H7 APCAPC_H7 <Green E-A>: CD62L PEAPC<Green A-A>: CD197 PE_Cy7 C-A>: CD28 PE_Cy5 <Green D-A>: CD45RO ECD<Red <RedC-A>: A-A>:CD27 CD45RA <Red C-A>: CD27 <Green E-A>: CD62L PE<Green <Green A-A>: CD197 PE_Cy7<Blue <Gr Higher order relationships • Immune cells in context – Cell networks – Temporal profiles – Tissue dependence – Disease state MARRIAGE OF AUTOMATED APPROACHES AND ONTOLOGY? Potential applications of ontology • Improve statistical/machine learning algorithms – Patterns of expression – Higher order relations to constrain assignment – Machine inference – e.g. report HIV status via information in IDO about temporal changes in HIV infection • Automated annotation of cell subsets • Automated report generation (e.g. MiFlowcyte, MIATA requirements) Acknowledgements • Theoretical – Mike West, Andrew Cron, Lynn Lin, Fernando Bonassi, Adam Richards, Jacob Frelinger, Quanli Wang, Thomas Kepler, Lindsay Cowell, Anna Maria Masci • Experimental – Kent Weinhold, Janet Staats, Jennifor Enzor, Sarah Sparks, Guido Ferrari, John Whitesides, Tony Moody, Thad Gurley, David Murdoch, Tom Denny, Scott Palmer, Doug Tyler, CIP. • Funding – NIAID, NHLBI, WCF, BMF, MRA