Review Steven A. Jones BIEN 501 Friday, May 14, 2007 Louisiana Tech University Ruston, LA 71272 Slide 1
Download ReportTranscript Review Steven A. Jones BIEN 501 Friday, May 14, 2007 Louisiana Tech University Ruston, LA 71272 Slide 1
Review Steven A. Jones BIEN 501 Friday, May 14, 2007 Louisiana Tech University Ruston, LA 71272 Slide 1 Simple Flow Field What is the pathline? Louisiana Tech University Ruston, LA 71272 Slide 2 Simple Flow Field Louisiana Tech University Ruston, LA 71272 Slide 3 Simple Flow Field Pathline follows the particle Louisiana Tech University Ruston, LA 71272 Slide 4 Simple Flow Field What is the streakline? Louisiana Tech University Ruston, LA 71272 Slide 5 What is the Differential Equation that Describes a Streamline? Assume we know that: u x, y, z f x, y, z i gx, y, z j hx, y, z k Answer: Since So dx dy dz u v w x f x, y, z , y g x, y, z Louisiana Tech University Ruston, LA 71272 dx u , dy v dx u dz w x f x, y, z z hx, y.z Slide 6 Continuity For a two-dimensional flow: u cosxe y Use the equation of continuity to determine v. Louisiana Tech University Ruston, LA 71272 Slide 7 Answer u v u v u 0 v dx f y x y x y x u sin x e y x v sinxe y dx f y v sin x e y f y Louisiana Tech University Ruston, LA 71272 Slide 8 What is the equation for a pathline? A pathline follows a fluid particle. Assume that you know the entire velocity field: u x, t and that the particle passes through the point x0 x0 , y0 , z0 at time 0. Answer: x t dt x t u t dt dx u x, t dt Louisiana Tech University Ruston, LA 71272 Slide 9 Example Assume that: 2 u x, t x i 2xyj Is continuity satisfied? Answer: Yes Louisiana Tech University Ruston, LA 71272 Slide 10 What is the equation for a pathline? Assume that: 2 u x x i 2 xyj What is the equation for the pathline through (1,2)? dy dx u x , vx dt dt dx dy dy 2 x , 2 xy dt dt dt 2 xy Answer: dx dx x 2 2 xy x dy dy 2y Louisiana Tech University Ruston, LA 71272 Slide 11 What is the equation for a pathline? dx x dx dy lnx ln2 y C dy 2y x 2y xe Write: ln2 y C C ln x Louisiana Tech University Ruston, LA 71272 2y Slide 12 What is the equation for a pathline? x 1 so 22 2y 4 4 x 2y Louisiana Tech University Ruston, LA 71272 Slide 13 Answer (Continued) xt 1 x 2t f y yt 2 2 xyt g x Louisiana Tech University Ruston, LA 71272 Slide 14 Two Compartment Model Central Compartment Peripheral Compartment k1V1C1 m qd C2 C1 V1 k2V2C2 m V2 Clearance Conservation of Mass Louisiana Tech University Ruston, LA 71272 dC1 V1 V1k1C1 V2 k 2C2 V1keC1 Central dt dC2 Peripheral V2 V1k1C1 V2 k 2C2 dt Slide 15 Two Compartment Model V2 In terms of the volume ratio 21 V1 Conservation of Mass dC1 k1C1 21k 2C2 keC1 dt dC2 21 k1C1 21k 2C2 dt Central Peripheral D C1 0 C0 , C2 0 0 V1 Initial Conditions 2 Solve the two ODEs for C1 Louisiana Tech University Ruston, LA 71272 d C1 dC1 k1 k2 k3 k2 keC1 0 2 dt dt Slide 16 ICs in terms of C1 1 dC1 0 C1 0 C0 , C2 0 k1 ke C1 0 0 21 dt C1 0 C0 dC1 0 k1 ke C0 dt Louisiana Tech University Ruston, LA 71272 Slide 17 Solution 2 dC1 k1 k2 k3 k2 keC1 0 2 dt dt D dC1 0 C1 0 C0 , k1 ke C0 V1 dt The solution to: d C1 With Is Where: C1 C0 e 1, 2 Louisiana Tech University Ruston, LA 71272 1t 1 e 2t k1 k2 ke k1 k2 ke 2 4k2ke 2 Slide 18 Two Compartment Model C1 C0 e Rapid Release 1t 1 e 2t Slow Release One Compartment Louisiana Tech University Ruston, LA 71272 Slide 19 Two Compartment Model The two-compartment model obeys the same differential equations as the simple RLC circuit. It is useful to compare the individual components to the RLC circuit: Damping dC d 2C1 1 k k k k2 keC1 0 1 2 e 2 dt dt Transfer from L to C Louisiana Tech University Ruston, LA 71272 Slide 20 Two Compartment Model One might expect that overshoot (ringing) could happen. However, ringing will only happen for imaginary values of . In our case: k1 k2 ke k1 k2 ke 2 1, 2 4k2 ke 2 As you increase k2 or ke, you must also increase (k1+k2+k3). And for the RLC Circuit: 2 1, 2 R R R 2 4 2 L LC L 2 Louisiana Tech University Ruston, LA 71272 Can make the square root imaginary with small R or large C. Slide 21 Two Compartment Model To see if the square root can become imaginary, minimize it’s argument w.r.t. ke and see if it can be less than 0. k1 k2 ke k1 k2 ke 2 1, 2 2 4k2 ke d k1 k2 ke 2 4k2 ke 0 dke 2k1 k2 ke 4k2 0 2k1 2k2 2ke 0 k1 ke k2 Louisiana Tech University Ruston, LA 71272 Slide 22 Two Compartment Model What value does the argument of the square root take on at the minimum? k1 ke k2 k1 k2 ke 2 4k2ke k1 ke k 2 4k 2 ke 2 k 2 k 2 4k 2 ke 4k 22 4k 2 ke 2 4k 2 k1 ke 4k 2 ke 4k 2 k1 Since k2 and k1 cannot be negative, the argument of the square root can never be negative. I.e. no ringing. Louisiana Tech University Ruston, LA 71272 Slide 23 Pharmacokinetic Models QL Cv Q Vascular Cp Js L Interstitial Ci Ci Q: Plasma Flow L: Lymph Flow q Js, q: Exchange rates Cellular PBPK: Physiologically-Based Pharmocokinetic Model Louisiana Tech University Ruston, LA 71272 Slide 24 Pharmacokinetic Models dCv Vv QC p Q L Cv J s Rv dt dCi LCi Vi Js q Ri dt Z dCc Vc q Rc dt Z: Equilibrium concentration ratio between interstitium and lymph. Ci ZCL Louisiana Tech University Ruston, LA 71272 Slide 25 More Complicated Models Plasma Liver G.I. Track Kidney Muscle Louisiana Tech University Ruston, LA 71272 Slide 26 Note on Complexity • While the equations become more complicated as more components are added, the basic concepts remain the same, and the systems can be analyzed with the same tools you would use to analyze a linear system in electrical engineering (e.g. transfer functions, Laplace transforms, Mason’s rule). Louisiana Tech University Ruston, LA 71272 Slide 27 Louisiana Tech University Ruston, LA 71272 Slide 28 What is the Differential Equation that Describes a Streamline? x f x, y , z dy az g x, y , z x f x, y , z dz b y hx, y.z Louisiana Tech University Ruston, LA 71272 Slide 29