^ Azimuthally-sensitive HBT (asHBT) in Au+Au collisions at sNN=200 GeV Mike Lisa, Ohio State University for the STAR Collaboration • motivation – why study.
Download ReportTranscript ^ Azimuthally-sensitive HBT (asHBT) in Au+Au collisions at sNN=200 GeV Mike Lisa, Ohio State University for the STAR Collaboration • motivation – why study.
^ Azimuthally-sensitive HBT (asHBT) in Au+Au collisions at sNN=200 GeV Mike Lisa, Ohio State University for the STAR Collaboration • motivation – why study asHBT @ RHIC? • BlastWave parameterization of freeze-out • fits/predictions @ 130 GeV • sensitivity of asHBT to F.O. shape • asHBT in Au+Au collisions at s NN=200 GeV • RP/binning resolution correction • radii vs centrality, kT, • physics implications • Summary STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 1 Already a problem with “traditional” HBT @ RHIC… • p-space observables well-understood within hydrodynamic framework → hope of understanding early stage • x-space observables not well-reproduced • correct dynamical signatures with incorrect dynamic evolution? • Too-large timescales modeled? • emission/freezeout duration (RO/RS) • evolution duration (RL) Heinz & Kolb, hep-ph/0204061 dN/dt CYM & LGT PCM & clust. hadronization NFD NFD & hadronic TM string & hadronic TM STAR HBT PCM & hadronic TM 6 Sep 2003 time XXXIII ISMD - Krakow Poland 2 … so why study (more complicated) asHBT ? • sensitive to interplay b/t anisotropic geometry & dynamics/evolution (Ulrich’s talk) • “broken symmetry” for b0 → more detailed, important physics information • another handle on dynamical timescales – likely impt in HBT puzzle P. Kolb, nucl-th/0306081 P. Kolb and U. Heinz, hep-ph/0204061 “elliptic flow” STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 3 Freeze-out anisotropy as an evolution “clock” hydro evolution later hadronic stage? Teaney et al, nucl-th0110037 • dilute (hadronic) stage • little effect on p-space at RHIC • significant (bad) effect on HBT radii • related to timescale • qualitative change in FO in-planeextended P. Kolb and U. Heinz, hep-ph/0204061 RS small • anisotropic pressure gradients → preferential in-plane flow (v2) → evolution towards in-plane shape • FO sensitive to evolution duration 0 hydro only hydro+hadronic rescatt p=90° RS big R.P. p=0° STAR PHENIX Soff, Bass,nucl-th/0110037 Dumitru, PRL 2001 Teaney, Lauret, Shuryak, out-of-plane-extended Teaney et al, nucl-th0110037 • FO from asHBT? STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 4 Need a model of the freezeout- BlastWave BW: hydro-inspired parameterization of freezeout • longitudinal direction • infinite extent geometrically • boost-invariant longitudinal flow • Momentum space • temperature T • transverse rapidity boost ~ r (r ) R r 0 ~r 0 R • Schnedermann et al (’93): 2-parameter (T, max) “hydro-inspired” functional form to fit spectra. • Useful to extract thermal, collective energy R dN p sinh m sinh 0 r dr mT I0 T K1 T mT dm T T T Teaney, Lauret & Shuryak, nucl-th/0110037 1, 2 r max R tanh -1 azimuthally isotropic source model – let’s generalize for finite impact parameter … STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 5 Need a model of the freezeout- BlastWave BW: hydro-inspired parameterization of freezeout • longitudinal direction • infinite extent geometrically • boost-invariant longitudinal flow • Momentum space • temperature T • transverse rapidity boost ~ r r (r ) ~r (r , ) ~ r cos(2 ) R 0 0 s 0 a RY b RX • coordinate space • transverse extents RX, RY • freezeout in proper time • evolution duration 0 • emission duration 00 0 2 dN ~ exp 2 d 2 STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland 6 Need a model of the freezeout- BlastWave BW: hydro-inspired parameterization of freezeout • longitudinal direction • infinite extent geometrically • boost-invariant longitudinal flow • Momentum space • temperature T • transverse rapidity boost ~ r r (r ) ~r (r , ) ~ r cos(2 ) R 0 0 s 0 a RY b RX • coordinate space • transverse extents RX, RY • freezeout in proper time • evolution duration 0 • emission duration 7 parameters describing freezeout 0 2 dN ~ exp 2 d 2 STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland 7 BlastWave fits to published RHIC data • pT spectra constrain (mostly) T, 0 STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland central midcentral peripheral 8 BlastWave fits to published RHIC data • pT spectra constrain (mostly) T, 0 • (traditional) HBT radii constrain R, 0, • depend also on T, 0 RoutRout RsideRside R=9 fm R=12 fm R=18 fm STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation RlongRlong XXXIII ISMD - Krakow Poland 9 BlastWave fits to published RHIC data • pT spectra constrain (mostly) T, 0 central midcentral peripheral • (traditional) HBT radii constrain R, 0, • depend also on T, 0 • imperfect fit (esp. PHENIX RS) STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland 10 BlastWave fits to published RHIC data central midcentral peripheral • pT spectra constrain (mostly) T, 0 • (traditional) HBT radii constrain R, 0, • depend also on T, 0 • imperfect fit (esp. PHENIX RS) • v2(pT,m) constrain RY/RX, a Central Midcentral Peripheral T (MeV) 108 3 106 3 95 4 0 0.88 0.01 0.87 0.02 0.81 0.02 a 0.06 0.01 0.05 0.01 0.04 0.01 RX (fm) 12.9 0.3 10.2 0.5 8.0 0.4 RY (fm) 12.8 0.3 11.8 0.6 10.1 0.4 0 (fm/c) 8.9 0.3 7.4 1.2 6.5 0.8 (fm/c) 0.0 1.4 0.8 3.2 0.8 1.9 153.7 / 92 74.3 / 68 2 / ndf STAR 80.5 / 101 HBT 6 Sep 2003 F. Retière & MAL, in preparation XXXIII ISMD - Krakow Poland • reasonable centrality evolution • OOP extended source in non-central collisions ~ 2 fm/c with Bowler CC (Not this talk) 11 So far • v2(pT,m) indicates OOP-extended FO source for non-central collisions • (confirmation from minbias asHBT) • Would rather “view” the geometry more directly → analyze asHBT in higher-statistics 200 GeV dataset (next…) p=90° RS small RS big R.P. p=0° • But… HBT radii depend on “everything” (T, 0, …) • can we extract FO shape from asHBT alone? STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 12 can we extract FO shape from asHBT alone? the BlastWave view out side • non-central collisions – all HBT radii exhibit 0th & 2nd - order oscillations (n>2 negligible) • characterize each kT bin with 7 numbers: 2 R pT , cos n 2 R ,n pT 2 R p , sin n T o, s, l os R2os,0 = 0 by symmetry (Ulrich’s talk) STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation out-side XXXIII ISMD - Krakow Poland long 13 can we extract FO shape from asHBT alone? the BlastWave view • non-central collisions – all HBT radii exhibit 0th & 2nd - order oscillations (n>2 negligible) • characterize each kT bin with 7 numbers: 2 R pT , cos n 2 R ,n pT 2 R p , sin n T o, s, l os • for fixed (RY2+RX2), increasing RY/RX • R2,0 unchanged • |R2,2| increases (sensitivity to FO shape) • both R2,0 and |R2,2| fall with pT • same dependence/mechanism? (flow-induced x-p correlations) • examine “normalized” oscillations R2,2/R2,0 STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland 14 FO shape from “normalized” oscillations the BlastWave view • no-flow scenario: independent of pT… R 2y R 2x R 2y R 2x 2 R s2, 2 R s2,0 2 2 R os ,2 R s2,0 2 R o2, 2 R s2,0 U. Wiedemann PR C57 266 (1998) MAL, U. Heinz, U. Wiedemann PL B489 287 (2000) • in BW: this remains ~true even with flow (esp @ low pT) STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation /2 XXXIII ISMD - Krakow Poland 15 FO shape from “normalized” oscillations the BlastWave view fixed • no-flow scenario: independent of pT… R 2y R 2x R 2y R 2x 2 R s2, 2 R s2,0 2 2 R os ,2 R s2,0 2 R o2, 2 R s2,0 U. Wiedemann PR C57 266 (1998) MAL, U. Heinz, U. Wiedemann PL B489 287 (2000) • in BW: this remains ~true even with flow (esp @ low pT) • independent of RY2+RX2 • independent of (and 0) • ~independent of T (and 0) → estimate from R2,2/ R2s,0 (=o,s,os) STAR HBT 6 Sep F. Retière & MAL, in 2003 preparation XXXIII ISMD - Krakow Poland 16 asHBT at 200 GeV in STAR – R() vs centrality 12 (!) -bins b/t 0-180 (kT-integrated) • clear oscillations observed in transverse radii of symmetry-allowed (Heinz’s talk) type • centrality dependence reasonable • oscillation amps higher than 2nd-order ~ 0 → extract 0th, 2nd Fourier coefficients vs kT with 4 -bin analysis STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 17 Correcting for finite -binning & RP-resolution • Reaction-plane estimation (from event-wise p-space anisotropy) is imperfect → nth-order oscillations reduced by cos(n(m--R)) * mm--R R * cos(nm) from flow analysis – e.g. Poskanzer & Voloshin Phys. Rev. C58 1671 (1998) STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 18 Correcting for finite -binning & RP-resolution • Reaction-plane estimation (from event-wise p-space anisotropy) is imperfect → nth-order oscillations reduced by cos(n(m--R)) * • bins have finite width → nth-order oscillations reduced by sin( n / 2) n / 2 * cos(nm) from flow analysis – e.g. Poskanzer & Voloshin Phys. Rev. C58 1671 (1998) STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 19 Correcting for finite -binning & RP-resolution • Reaction-plane estimation (from event-wise p-space anisotropy) is imperfect → nth-order oscillations reduced by cos(n(m--R)) * • bins have finite width → nth-order oscillations reduced by sin( n / 2) n / 2 oscillations of what? • not the HBT radii • what is measured (and averaged/smeared) are pair number distributions N(q), D(q) [ C(q) = N(q) / D(q) ] * cos(nm) from flow analysis – e.g. Poskanzer & Voloshin Phys. Rev. C58 1671 (1998) STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 20 Correcting for finite -binning & RP-resolution Nq, Cq, Dq, Heinz, Hummel, Lisa, Wiedemann, Phys. Rev. C66 044903 (2002) N exp (q, j ) N exp ( q ) 0 N bin exp 2 N exp ( q ) cos( n ) N c ,n j s ,n (q ) sin( n j ) n 1 N(q, j ) Nexp (q, j ) N bin exp 2 n ,m () Nexp ( q ) cos( n ) N c ,n j s ,n (q) sin( n j ) n 1 Fourier coefficients for a given q-bin. n ,mexp() n / 2 N ( q ) N ( q cos( Fourier coefficients a ngiven sin(exp n /,2) )for cos( ()m qbin c ,n R )) “raw” corrected 1 p N1exp N (qbin, ) cos(n) factor N exp q, j ) cos( n j ) for correction for nth(-order oscillations N bin 1 j1N the damping effects ofj ) cos( n j ) N bin exp (q, N j1 1)expfinite determining the mthN (q) resolution Nbinexp (q, in ) sin( n) s ,nexp Ns,norder (q) event-plane N exp (q, ) sin( n) 1 NNbinbin bin width 2) non-vanishing () in the • ~ 30% effect on 2nd-order radius oscillations 1 N exp(q, j ) sin( n j ) emission N angle (q, respect N with j ) sin( nto j ) the event• ~0% change in mean values bin jj11 exp N STAR plane (binj) HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 21 N exp ( q ) c ,n asHBT at 200 GeV in STAR – R() vs kT • Clear oscillations observed at all kT • extract 7 radius Fourier Coefficients (shown by lines) 2 R pT , cos n R ,n pT 2 R p , sin n T 2 STAR HBT 6 Sep 2003 midcentral collisions (20-30%) o, s, l os XXXIII ISMD - Krakow Poland 22 Grand Data Summary – R2,n vs kT, centrality • One plot w/ relevant quantities from 2x5x3x4 3D CFs 2 R pT , cos n R ,n pT 2 R p , sin n T 2 o, s, l os • left: R2,0 “traditional” radii • usual kT, centrality dependence • right: R2,2 / R2,0 • reasonable centrality dependence • BW: sensitive to FO source shape STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 23 Estimate of initial vs F.O. source shape R 2y R 2x R 2y R 2x • estimate INIT from Glauber • from asHBT: FO RHIC1 [Kolb & Heinz] R S2, 2 2 2 R S,0 • FO < INIT → dynamic expansion • FO > 1 → source always OOP-extended • constraint on evolution time STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 24 A simple estimate – 0 from init and final • BW → X, Y @ F.O. (X > Y) • hydro: flow velocity grows ~ t X ,Y ( t ) X ,Y (F.O.) t 0 • From RL(mT): 0 ~ 9 fm/c consistent picture • Longer or shorter evolution times X inconsistent P. Kolb, nucl-th/0306081 toy estimate: 0 ~ 0(BW)~ 9 fm/c • But need a real model comparison → asHBT valuable “evolutionary clock” constraint for models STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 25 Summary • FO source shape a “clock” for system evolution – OOP-extended earlier kinetic FO – further test of long-lived hadronic stage (OOPIP-extended source) • BlastWave parameterization of FO at RHIC -- sNN=130 GeV – not perfect fit @ 130 GeV, but can provide some guidance/insight – “traditional HBT” in fit suggest short emission, evolution timescales • qualitatively supported by OOP from v2, minbias asHBT – Fourier decomposition of HBT radius oscillations • even with flow-induced x-p correlations, asHBT alone useful to estimate FO (R2u,2/ R2s,0) • asHBT @ sNN=200 GeV – 0th, 2nd-order oscillation amplitudes characterize -dependence of HBT radii • of type allowed by symmetry – centrality dependence reasonable – oscillations at all kT • OOP FO shape fast evolution (~9 fm/c) STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 26 To do… • Me – finalize analysis/systematic errors – BW fits to final 200 GeV data (spectra, v2, asHBT) – does it hang consistently together? • Theorists – can satisfactory FO be reached faster (e.g. more explosive EoS)? • more constraints in that direction! – modification of hadronic stage needed?? Csörgő, Akkelin, Hama, Lukács, Sinyukov PR C67 034904 (2003) Heinz & Kolb, hep-ph/0204061 STAR HBT 6 Sep 2003 XXXIII ISMD - Krakow Poland 27