E-158 : A precise measurement of sin 2 W at low Q 2 Antonin VACHERET CEA SACLAY PAVI 2004, June 10 The 2 miles long.

Download Report

Transcript E-158 : A precise measurement of sin 2 W at low Q 2 Antonin VACHERET CEA SACLAY PAVI 2004, June 10 The 2 miles long.

E-158 : A precise measurement
of sin 2 W at low Q 2
Antonin VACHERET
CEA SACLAY
PAVI 2004, June 10
The 2 miles long LINAC at SLAC
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
•
•
•
•
•
•
Physics Motivation
Apparatus
Control of systematics
Analysis
Run I+II preliminary results
Conclusion
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Extracting the weak charge at low Q 2
Møller scattering :
- Sensitive to: e, Qw
Parity violation asymmetry :
 R   L M M Z
APV 

R L
M 2
Tree level Moller asymmetry :
GF
16sin 2   1

2
Aee  mE

si
n

W 
2
2 
(3

c
o
s

)
4
2


7
Aee (Q  0.03)  3.2 10
2
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
Qw
(320 ppb)
PAVI 2004
Radiative corrections
• 1 loop corrections change the relation between
2
Aee and sin W:
GF 16sin 2   1

2
2
Aee  mE
  (Q ) sin W   ...
2
2 
2 (3  cos  )  4

  1.00122
 (Q2  0)
 1.03  0.0025
 (mZ )
3% corrections to sin
2
W (M Z )MS
Aee
 40% !!!
Aee
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Sensitivity
2
Aim to measure sin W to
0.001 level
6.5 significance level to
radiative corrections effect.
Projection
1. Precise measurement away
from Z pole
complementary to e-e+
colliders
2. Sensitive to new physics
scenarii :
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
Electron compositness
L ~ 10 TeV
Z’ (GUT) boson
MZ’ ~ 0.8 TeV
PAVI 2004
SLAC E158
•UC Berkeley
•Caltech
•Jefferson Lab
•Princeton
•Saclay
SLAC
Sep 97:
1998-99:
2000:
2001:
2002:
2003:
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
•SLAC
•Smith College
•Syracuse
•UMass
•Virginia
EPAC approval
Design and Beam Tests
Funding and construction
Engineering run
Physics Runs I, II
Physics Run III
SLAC E-158
A-line
ESA
PAVI 2004
Experiment principle
Raw Asymmetry =1.3x10-7 (130 ppb) (Apv) = 10-8 (10 ppb)
Need 1016 electrons
2,7 GHz scattered Møller
BEAM
• Ee= 45 GeV
TARGET
LH2
• High Polarization Pe=85%
Aee=PeAexp
DETECTOR
N+,N4-7 mrad
Flux
integration
High density target , ee=12 mb
L ~ 1038 cm-2s-1
• High intensity
5x1011 e-/pulse
•Fast polarization reversal
120 Hz
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
4 Months to achieve
10% statistical
precision
PAVI 2004
• Optical pumping :
QE (%)
Polarization (%)
Polarized beam
Wavelength (nm)
Very high-charge polarized electron
beams are possible (Pe~85%)
• Helicity sequence :
Quadruplet RLLR,LLRR,…
 Beam helicity is chosen
pseudo-randomly at 120 Hz
•Data analyzed as “pulse-pairs”
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Liquid Hydrogen target
Length 1.54 m
Refrigeration capacity 1 kW
Beam heat deposit 800W
Operating temperature 20K
Flow rate 5 m/s
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Spectrometer
e-e
60 m
• Dipole Magnetic chicane cut
particles
< 10 GeV
• Quadrupoles focus Møller
electrons
• Synchrotron light blocked with
Collimators.
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Electron Detector
Basic Idea:
light guide
: quartz
: copper
air
shielding
•
•
•
•
PMT
Full Azimuthal acceptance
Radiation hard
Fast pure Cerenkov signal
Insensitive to low energy
backgrounds
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Statistics and systematics
•
Integrating counting rate :
Aexp 
NR  NL
NR  NL
Pulse pair width ~ 200 ppm
Raw asymmetry ~ 150 ppb
1. Additional random fluctuations :
affect statistical precison
2. Constant shift :
false asymmetry
•
Origin :
beam parameters variations (E,X,Y, x,y)
Physics backgrounds
Electronic crosstalk
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Precise beam diagnostics
Aexp  AN  AI  AE  i X i
Energy dithering
region
BPM24 X (MeV)
• High resolution BPM cavity monitors (energy position,
angle)
• Toroids (beam current)
BPM ~2 microns
toroid ~30 ppm
Agreement (MeV)
energy ~1 MeV
BPM12 X (MeV)
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Minimizing beam asymmetries
Natural pulse to pulse jitter :
AI~0.5%
Feedback loop (Cumulative) :
AE~0.1%
(run I data)
Cumulative asymmetries with feedback on :
AI< 200 ppb +/- 5 ppb
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
AE< 20 ppb +/- 3 ppb
PAVI 2004
Backgrounds controls
Flux integration includes various residual backgrounds :
APV
1 Araw  fbkg Abkg
 
Pb
fnorm
False asymmetry
eP ring
Dilution effect
Flux Radial and azimuthal scans
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
eP asymmetry
Pion flux and
asymmetry
PAVI 2004
Scattered flux profile
• Very good agreement between Flux scans and
MC (run I)
Flux vs radial distance agreement
e-e
Radial and azimuth agreement
e-p
• Q2 determination : <Q2> = 0.0266 GeV-2
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Corrections method
Run I: APV(regression-dithering) = (3.1 ± 11.8) ppb
Run II: APV(regression-dithering) = (4.8 ± 4.2) ppb
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
Very good agreement !
PAVI 2004
Analysis
Raw asymmetry distribution by runs
Raw asymmetry distribution by pairs
Gaussian over 5 orders of magnitude
• Blinded asymmetry
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Slow reversal
1. Insertable Half Wave Plate
Split data in four exclusive states :
2. Energy change 45 -> 48 GeV
g-2 precession in A-Line
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Systematics summary
Source
Run I + II
DA (ppb)
Dilution
Beam 1st order
0 +/- 2
-
Beam 2nd order
0 +/- 9
-
Transverse polarization
-12 +/- 2
-
eP Background
-30 +/- 5
0.071 +/- 0.008
High energy 
3 +/- 3
0.004 +/- 0.002
Synchrotron 
0 +/- 2
0.0015 +/- 0.0005
Neutrons
-2.5 +/- 1.5
0.0015 +/- 0.0005
Pions
0.5 +/- 0.8
0.0014 +/- 0.0011
Normalization factors
Polarimetry
0.847 +/- 0.046
Geometry
0.989 +/- 0.011
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Run I+II Preliminary
Q2 = 0.027 GeV2):
Official Run I result :
PRL : hep/ex:0312035
First observation of
parity violation in Møller
scattering ~ 5 
Run I
APV = -175  30 (stat)  20 (syst) ppb
Run II
APV = -144  28 (stat)  23 (syst) ppb
APV = -161  21 (stat)  17 (syst) ppb
Run I + II (preliminary)
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
The Weak Mixing Angle
sin2eff(Q2=0.026 GeV2) = 0.2379 ± 0.0016 ±0.0013
(syst)
(Run I + II, preliminary) (stat)
Agreement with theory at the level of uncertainty
prediction: 0.2386 ± 0.0006
sin2(MZ2)
E158 projected
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Physics implication
• Parity is violated in Møller scattering
• Limit on LLL :
L+LL >= 7,4 TeV
L-LL >= 6,4 TeV
• Limits on extra Zs at the level of 700 GeV
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Toward the final result
•
•
•
•
Run III data analysis is being finalized
Preliminary result on full data set very soon
Systematics will improve
Significant complementary constraint on new
physics
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Conclusion
– Preliminary result on APV: -161 ± 21 ± 17 ppb
– sin2Weff = 0.2379 ± 0.0016 ± 0.0013 (preliminary)
– Inelastic e-p asymmetry at low Q2 consistent with quark
picture
– First measurement of e-e transverse asymmetry
– Preliminary result for all three runs soon !
- 10 ppb statistical error
- Systematic error will be less than statistical error
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Physics Runs
Run 1: Apr 23 12:00 – May 28 00:00, 2002
Run 2: Oct 10 08:00 – Nov 13 16:00, 2002
Run 3: July 10 08:00 - Sep 10 08:00, 2003
•One g-2 flip in each run
•/2 flip roughly once in two days
•Run I data divided into 24 “slugs”
Run 1: Spring 2002
Run 2: Fall 2002
Run 3: Summer 2003
1020 Electrons on Target
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Higher orders
• Beam spotsize : higher moment in residual
polarisation effect at the photocathode.
• Beam sub pulse fluctuations
- Evidences in Run II analysis
- monitored during Run III in order to estimate
the systematics.
- affect the OUT only
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Source Photocathode
New photocathode from NLC R&D effort.
(T. Maruyama et al., Nucl.Instrum.Meth.A492:199-211,2002 )
Electrons per pulse
QE (%)
Low doping for most
of active layer yields
high polarization.
Gradient-doped
cathode
structure.
Polarization (%)
High doping for 10-nm
GaAs surface overcomes
charge limit.
Wavelength (nm)
New cathode
No sign of charge limit!
Very high-charge polarized electron
beams are possible.
Old cathode
Antonin VACHERET, CEA-Saclay
LaserDapnia/SPhN
Power (µJ)SLAC E-158
Small anisotropy in strain results in ~3%
analyzing power for residual linear polarization.
PAVI 2004
End Station A setup
Target chamber
Quadrupoles
Concrete Shielding Detector Cart
Dipoles
Drift pipe
60 m
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Results of
corrections
Regression
c xp
pxp
c xc
pxc
Dithering
Asym width goes form ~500 ppm to 200 ppm
Run I: APV(regression-dithering) = (3.1 ± 11.8) ppb
Run II: APV(regression-dithering) = (4.8 ± 4.2) ppb
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
from APV to sin2Weff
APV
GF Q 2
1 y
2
eff



F

1

4
sin

brem
W
4
4 2 1  y 4  1  y 


where:
is an analyzing power factor; depends on
GF Q 2
1 y


4
kinematics and experimental geometry.
4 2 1  y 4  1  y 
2
Uncertainty is 1.7%. (y = Q /s)
Fbrem = (0.90 ± 0.01) is a correction for ISR and FSR;
(but thick target ISR and FSR effects are included in the analyzing power
calculation from a detailed MonteCarlo study)
Weff is derived from an effective coupling constant, geeeff , for the Zee coupling,
with loop and vertex electroweak corrections absorbed into geeeff
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
“ep” Detector Data
•Radiative tail of elastic ep scattering is dominant background
•8% under Moller peak
•Additional 1% from inelastic e-p scattering
•Coupling is large: similar to 3 incoherent quarks
•Reduced in Run II with additional collimation
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Backgrounds
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Polarized Source Laser System
IA Feedback Loop
IA cell applies a helicity-correlated
phase shift to the beam.
The cleanup polarizer transforms
this into intensity asymmetry.
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
POS Feedback Loop
Piezomirror can deflect laser beam
on a pulse-to-pulse basis.
Can induce helicity-correlated
position differences.
PAVI 2004
rf Cavity BPMs for E-158
476 MHz
RF Cavity
BPM
Mixer
Rf cavities resonate at 2856 MHz
X cavity is TM210
Y cavity is TM120
Q cavity is TM010
“ANALYSIS OF AN ASYMMETRIC RESONANT CAVITY AS A BEAM MONITOR”
(David H. Whittum (SLAC), Yury Kolomensky (Caltech). SLAC-PUB-7846;
published in Rev.Sci.Instrum.70:2300-2313,1999.)
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Beam Performance
Quantity
Delivered
(May 2002)
Quantity
Run 1 Achieved
AQ
Alcove: 219 ± 319 ppb
(AQ)
-8.4 ± 7.8 ppb*
Electrons / pulse
6 x 1011 @ 45 GeV,
3.5 x 1011 @ 48 GeV
Rep. rate
120 Hz
Intensity jitter
0.5%
AE
-0.1 ± 1.4 keV
-1.2 ± 14.8 ppb
Position jitter
50 µm
(AE)
-0.01 ± 0.24 keV
0.05 ± 2.6 ppb
Spot size jitter
5% of spot size
(x, y)target
(-16.6 ± 5.6 nm, -3.1 ± 4.0 nm)
Energy jitter
0.03% rms
(x, y)target
(1.0 ± 0.6 nm, -0.01 ± 0.9 nm)
Energy spread
0.1% rms
(x, y)angle
(15.9 ± 9.4 nm, 4.8 ± 2.7 nm)
Polarization
(85 ± 5)%
(x, y)angle
(-2.7 ± 2.0 nm, 0.9 ± 1.0 nm)
Efficiency
~(65-70)%
(x, y)spotsize
(0.7 ± 1.9 nm, -1.7 ± 1.9 nm)
All proposal goals achieved or exceeded
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Luminosity Monitor Data
•Null test at level of 20 ppb
• Target density fluctuations small
• Limits on second order effects
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Collimators
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Pion Detector
•~ 0.5 % pion flux
•~ 1 ppm asymmetry
•< 5 ppb correction
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
PAVI 2004
Future Possibilities
Part per billion measurements are now feasible:
future measurements could improve sensitivity
Challenging experiments
Interest will depend on
discoveries (or lack thereof)
over the next few years,
including LHC
Antonin VACHERET, CEA-Saclay Dapnia/SPhN
SLAC E-158
Qweak
E158
~4 years
(projected)
Møller
Jlab 12 GeV
DIS
Jlab 12 GeV
PAVI 2004