Transcript pptx

無機化学 1
3回
10/5/2012
2-1章
電子・原子・原子構造、電子の配置と周期表
目的
1)原子の構成粒子の種類(陽子+中性子+電子)
2)元素の種類と構成内容(陽子数=電子数→元素
種、中性子数)
3)元素の性質の周期性と周期表
2.1) 元素発見の歴史と原子
●元素に関する知識の蓄積と周期表(不完全)の作成
1)錬金術時代からの分析化学的手法により、18世紀末まで約30種の元素
2)19世紀に入ると、電気化学分析(デービー、K,、Na、Mg、Sr、Ba、Ca)、発光スペ
クトル分析(炎色反応、ブンゼン、キルヒホフ, Cs、Rb)などにより、半世紀強の間
にそれまで知られていたものとほぼ同数の未知元素が発見された
3)その結果、元素の分類整理が可能となり、原子量の順に並べると8番目ごとに
類似の性質が現れる(オクターブの法則)などの周期性が確認された
4)1869年 メンデレーフによる62種元素の周期表の発表
ブンゼン(1811 – 1899)は、ドイツの化学
者。ブンゼンバーナーを利用して、キル
ヒホッフと共に、分光学的方法で1860年
にCs、1861年にRbを発見した。水酸化鉄
ブンゼン
メンデレーフ
デービー
キルヒホフ
のヒ素中毒の解毒作用の発見などを
行ったが、砒素化合物のカコジルの研究
キルヒホフ(Kirchhoff, 1824 - 1887)は、プロイ
によりヒ素中毒で死にかけた上、カコジ
セン(現在のロシアのカリーニングラード州)生
ルの爆発により右目の視力を失なった。
まれの物理学者。電気回路におけるキルヒ
ホッフの法則、放射エネルギーについてのキ
ルヒホッフの法則、反応熱についてのキルヒ
(CH3)2As-As(CH3)2
ホッフの法則は、どれも彼によってまとめられ
た法則である
メンデレーフの提唱(1869年)
1.元素は原子量の順に並べると明らかにその性質ごとの周期性を表す。
2. 科学的特性の類似する元素はほぼ同じ原子量であるか(例:白金、イリジウム、
オスミウム)、原子量が規則的に増加する(例:カリウム、ルビジウム、セシウム) 。
3.元素グループ内での原子量順に並べた元素の配列はいわゆる原子価だけでなく、あ
る範囲まで、独特の化学的特性と一致する。
4. 分子の大きさが化合物の性質を決定するように、原子量の大きさが元素の性質を
決定する。
5. 未知の元素の発見が期待される。たとえば、共に原子量が65から75の間であり、
科学的特性がアルミニウムに類似する元素およびケイ素に類似する元素が存在する
であろう(後年、該当するガリウム、ゲルマニウムが発見される)。
6. 元素の原子量は原子番号順で前後する元素の原子量に関する知識により修正できる
ことがある。例えば、テルルの原子量は123から126の間にあり、128になりえない
元素の特徴的な特性はその原子量から予言できる。
7.広範囲に存在している元素の原子量は小さい。
クラーク数(クラークすう、Clarke number)とは地球上の地表付近に存在する元素の割合
を火成岩の化学分析結果に基いて推定した結果を質量パーセントで表したもの。クラーク
数は科学史上の学説の一つにすぎず、今日では最新の調査結果に基づいている別の統
計資料を利用することが望ましい。
1
2
3
4
5
6
7
8
9
元素
酸素
ケイ素
アルミニウム
鉄
カルシウム
ナトリウム
カリウム
マグネシウム
水素
10 チタン
クラーク数
49.5
25.8
7.56
4.70
3.39
2.63
2.40
1.93
0.83
0.46
11
12
13
14
15
16
17
18
19
20
塩素
マンガン
リン
炭素
硫黄
窒素
フッ素
ルビジウム
バリウム
ジルコニウム
0.19
0.09
0.08
0.08
0.06
0.03
0.03
0.03
0.023
0.02
クラーク数順序の暗記法「おっしゃられて貸そうかマ」:O(お)、Si、Al(しゃられ)、Fe(て)、Ca
(か)、Na(そう:ソーダ)、K(か)、Mg(マ)で8番目まで覚えることができ、ついでに「提供は日
立」:H(ひ)た、Ti(ち)。
●周期表の完全化
1)周期表の隙間を埋める仕事
●ケイ素と錫の間: エカ-ケイ素→Ge
●エカ-ホウ素→Sc、●エカ-アルミニウム→Ga
2)第18族元素(周期表に無い系):不活性ガス、希ガス (単原子分子)の発見
●気体の液化技術と分別蒸留技術の開発による
●19世紀末Ne、Ar(Arの発見は、空気からO2とN2を化学反応で取り除いた残
留気体の分光による)、Kr、Xeが発見された。また、一番沸点の低いHe (沸
点-268.9℃, 4.18K、常圧では固体とならない)は1868年に太陽の輝線スペ
クトル中の未知元素に命名されたもの。
●レーリー(英、1842-1919)アルゴンの発見、ノーベル物理学賞
●ラムゼー(英、1852-1916)不活性ガスの発見、ノーベル化学賞
◎ついで、電子(ストーニー、クルックス、ジョゼフ・トムソン)、X線(レントゲン:電磁
波)、放射線(ベックレル)の研究が、20世紀の科学の出発点である原子構造につな
がる(キュリー、ラザーフォード・・a, b, g線)
電子の大きさについては、標準模型では0とさ
れるが、大きさを持つかどうか・内部構造を持
つかどうかは判明していない
レーリー
ラムゼー
クルックス(有機化学者、分光学者(Tlの発見)、クルックス管の開発
(電子線発見)、心霊現象研究)
●周期表の完全化
3)周期表の隙間を埋める仕事
○ランタノイド元素(La~Luの15元素)とアクチノイド元素(Ac~Lrの15元素)は、
各15種の元素の化学的性質が互いに極めて類似し、発見、解明に長時間を要
した
○モーズリーの法則(1913年、モーズリーは原子番号(Z)と元素の特性X線の波
長()の平方根の間に直線関係(2.3式、a, Z0は全ての元素について一定)を発見
1

 a( Z  Z 0 )
図2.1
○長岡半太郎(土星型原子模型、1904)→ラザーフォードの原子模型(1911)
→ボーアの原子模型(1913)
2. L電子がK殻に飛び込む
1. 電子衝撃により
K電子が飛び出す
3. 振動数のX
線が発生
K
N
M
Kg
L
Kb
プランク・アインシュタインの式
E  h 
hc

 hck
:振動数、h:プランク定数、
c:光速, λ:波長、k:波数
図2.2
Ka
Lb
La
Lg
特性X線の測定により、メンデレーフの周期表が改善された。
1)原子量順に並べることに伴う元素順位の逆転の訂正
[K(原子量=39.102) Ar(39.948), Ni(58.71) Co(58.9332),
I(126.90) Te(127.60)]。原子番号(原子核の陽子数=電子数)
順に並べることで解決された[Ar(18) K(19), Co(27)Ni(28),
Te(52) I(53)]。原子番号順と原子量順の逆転は、同位元素の
存在比に原因があった。
2)原子番号92のUより前にある周期表に空白であった元素(Tc(43),
Pm(61), Hf(72), Re(75), At(85), Fr(87))の発見がおこなわれた。
3)ランタノイド系列の確定が行われた。
1914年にオクスフォード大学に戻って研究を続けるが、第一次世界
大戦がはじまるとイギリス軍工兵隊に所属して出征。ガリポリの戦い
に参加し、同地で命令を電話連絡している際に狙撃兵に頭部を撃ち
抜かれて戦死した。27歳だった。早すぎる死がなければノーベル賞
の受賞は間違いなかったといわれている。彼が戦死した事件を受け
て、以後イギリスや他国の政府は自国の科学者が戦闘に従事するこ
とを禁ずるようになったと言われる。ちなみに、この戦いを指揮した当
時の海軍大臣チャーチルは1953年にノーベル文学賞を受賞するの
は、歴史の皮肉である。
放射線 原子核崩壊
ウラン以降の超ウラン元素の合成に、原子核への放射線a線
(ヘリウム原子核He2+)、b線(原子核の崩壊により放出される電
子)、g線(高エネルギー電磁波)の照射、加速器により人工的に
得た高エネルギー粒子(中性子、陽子、他)の照射、Uや超ウラン
元素の中性子照射、超重元素の重イオン照射が用いられた(原
子番号93から114まで)
1)a線:正電荷をもつ質量の重いa線
は少し曲げられる。無磁場では気体中
電磁波
を直線的に進行し、進路に沿って多く
の分子をイオン化する。
He2+
電子
図2.3
2)b線:質量が軽い負電荷のb線
は、a線と反対の方向に大きく曲
げられる。
3)g線:波長の短い電磁波で、透
過力は強く、磁場の影響を全く受
けない。人体に極めて危険である。
a線:He2+
「ポロニウム(Po)210はウランの百億倍の比放射能を有するが、所詮アルファ―線
だ、紙一枚でも防ぐことができる。飲み込んで体内被曝しなければ平気だ・・・傭
兵代理店(渡辺裕之)
リトヴィネンコ事件
・・・・・・・の不正と陰謀を暴こうとしていた・・・の元中佐だったリトヴィネンコは、
亡命先の英国で放射性物質のポロニウム210で毒殺された。「ポロニウムをも
られてから22日間リトヴィネンコは苦しみぬき、骨と皮と化し死亡(44歳)」
2004年11月に死去したPLO執行委員会議長ヤーセル・アラファートの死因も当初
不明とされたが、その後病院で使用していた衣類よりポロニウム210が検出され
たことより、ポロニウムによる暗殺が疑われている
ポロニウム210は99.99876% α崩壊のみで崩壊し、崩壊過程でγ線の放射を
0.00123%しか伴わない(殆どのα崩壊はγ線の放射を伴う)。 α線は紙一枚で遮断
されるために、容器に入ったポロニウム210(が微量仕込まれた食品等)を、 γ線
計測により検出することは不可能であり、運搬者が被爆しない点でも放射性暗殺
用薬物として適した特徴がある
Po 84番元素 半金属
(16族 O, S, Se, Te, Po)
昇華性があり、化学的性質は、テルルやビスマスBiに類似する。水に溶けない。塩酸に
はゆっくり溶ける。硫酸、硝酸には易溶、アルカリにはわずかに溶ける。酸化数は、
−2,+2,+4,+6価を取り得る(+4価が安定)。
ウラン系列の過程でラドンRn222が崩壊することによってポロニウム218が生じ、更にこ
れが崩壊していく過程でポロニウム214、ポロニウム210が生じる。自然界に存在するポ
ロニウムでは、ポロニウム210の半減期が138.4日と一番長い。人工的に作られるポロニ
ウム209の半減期は102年である。全ての同位体が強力な放射能を持っている。
マリ・キュリーがポロニウムの存在を示唆した際に、ポロニウムを
含む精製物がウランの300倍の放射活性を持つと記した表現が一
人歩きして、ウランの300から330倍の強さの放射能を持つという
表現がされることが多いが、実際にはウランの100億倍の比放射
能(単位質量当りの放射能の強さ (Bq/mol, Bq/g))を有し、ごく微
量でも強い放射能を持つ(ただし、逆に自然界にはウランの100億
分の1程度しか存在しない)。このため、昇華性のあるポロニウム
は内部被曝の危険が大きい為厳重な管理の下で取り扱われなければならない。しかし、
ポロニウムが発するα線自体は皮膚の角質層を透過出来ないため、ポロニウムを体内
に取り込まない外部被曝に関しては危険性は少ないともいえる。
α線源や原子力電池に加えてベリリウムBeと組み合わせて中性子発生源として核兵器
の起爆装置にも使われる。
イオン化エネルギー(Ip)の周期性
●ある原子がその電子をどれだけ強く結び付けているのかの目安
●同一周期の中で最高のイオン化エネルギーは希ガスのもので
あり、希ガスは安定な閉殻(closed shell)電子配置をもつ。
●最低のイオン化エネルギーは周期表の左端にある第1族
元素のものである。これらの原子のひとつから電子1個を除
くと希ガス原子と同じ閉殻電子配置を持つイオンになる。
Beとホウ素(B)、窒素と酸素などではその傾向が少しだけ逆転している。
この理由については原子軌道やフントの規則を考慮する必要がある。
窒素原子と酸素原子を例に考える。二つの電子配置は次の表の
ようになる。(IEの単位はeV)
N : 1s2 2s2 2p3
IE1:14.53, IE 2:29.60
O : 1s2 2s2 2p4
IE1:13.61, IE 2:35.12
1s
2s
2px
2py
2pz
N
↑↓
↑↓
↑
↑
↑
O
↑↓
↑↓
↑↓
↑
↑
窒素原子より酸素原子のほうが第一イオン化エネルギーが小さいの
は、2p軌道に入る4個目の電子が三重に縮重したp軌道のいずれか
の軌道に異なるスピンをもって入り、電子間の静電的な反発エネルギ
ーが電子を不安定にするためである。
イオン化傾向(混同しないこと) 溶媒中で中性元素(原子団)がイオンになり易い順番。
水溶媒でイオン化列という。
陽イオン
貸そうかな、まああてにするな、ひどすぎる借金
貸そう (K) か (Ca) な (Na)、ま (Mg) あ (Al) あ (亜鉛:Zn) て (鉄:Fe) に (Ni) する (Sn)
な (鉛:Pb)、ひ (H) ど (銅:Cu) す (水銀:Hg) ぎる (銀:Ag) 借 (白金:Pt) 金 (金:Au)
理智 (Li) ルビ (Rb) カ (K) バー (Ba)巣と炉 (Sr)仮 (Ca) 名 (Na)
魔具 (Mg)アル (Al) 漫画 (Mn) 合えん (Zn)黒夢 (Cr)鉄 (Fe) 門 (Cd)
木庭 (Co) に (Ni) 鈴 (Sn) 園 (Pb) 水 (H)アンチ (Sb) 尾 (Bi) 藤 (Cu)
水銀 (Hg)銀色 (Ag) パラパラ (Pd) 白い (Pt) 金 (Au)
陰イオン
のっそり王さんくるぶし痛い
の (NO3-) っそ (SO42-) り王 (OH-) さんくる (Cl-) ぶ (Br-) し痛 (I-) い
1
H
18
緑:気体、赤:液体、黒:固体
1
金属元素
2
3
Li
4
Be
11
Na
12
Mg
19
K
非金属元素
半金属元素
人工元素
2
He
13
14
15
16
17
5
B
6
C
7
N
8
O
9
F
10
Ne
13
Al
14
Si
15
P
16
S
17
Cl
18
Ar
3
4
5
6
7
8
9
10
11
12
20
Ca
21
Sc
22
Ti
23
V
24
Cr
25
Mn
26
Fe
27
Co
28
Ni
29
Cu
30
Zn
31
Ga
32
Ge
33
As
34
Se
35
Br
36
Kr
37
Rb
38
Sr
39
Y
40
Zr
41
Nb
42
Mo
43
Tc
44
Ru
45
Rh
46
Pd
47
Ag
48
Cd
49
In
50
Sn
51
Sb
52
Te
53
I
54
Xe
55
Cs
56
Ba
*1
72
Hf
73
Ta
74
W
75
Re
76
Os
77
Ir
78
Pt
79
Au
80
Hg
81
Tl
82
Pb
83
Bi
84
Po
85
At
86
Rn
87
Fr
88
Ra
*2
104
Rf
105
Db
106
Sg
107
Bh
108
Hs
109
Mt
110
Ds
111
Rg
112
Cn
113
Uut
114
Uuq
115
Uup
116
Uuh
117
Uus
118
Uuo
*1 ランタノイド:
57
La
58
Ce
59
Pr
60
Nd
61
Pm
62
Sm
63
Eu
64
Gd
65
Tb
66
Dy
67
Ho
68
Er
69
Tm
70
Yb
71
Lu
*2 アクチノイド:
89
Ac
90
Th
91
Pa
92
U
93
Np
94
Pu
95
Am
96
Cm
97
Bk
98
Cf
99
Es
100
Fm
101
Md
102
No
103
Lr
アルカリ金属
アルカリ土類金属
ハロゲン
カルコゲン:第16族元素の総称(酸素を除く場合もある)
希ガス
遷移元素
錬金術師、化学者、物理学者、科学者、その他無数の人たちによる知の集大
成である。元素の性質を簡潔かつ完成度が高く示した周期表は「化学のバイ
ブル」とも呼ばれる。現在、周期表は化学のあらゆる分野にて、反応の分類
や体系化および比較を行うための枠組みを与えるものとして、汎用的に用い
られている。そして、化学だけでなく物理学、生物学、化学工学を中心に工
学全体に、多くの法則を示す表として用いられる。2011年現在の周期表では、
発見報告がなされている118番目までの元素を含むものが一般的であるが、未
発見元素を含めた117番目までの元素を含む周期表も発表されている。
元素の分類
典型元素( main group (block) element、typical element、representative element)
:1族、2族、12族-18族の47元素。これら以外は遷移元素
遷移元素(transition element, transition metal): 3族―11族の64元素(原子番号
111までに限り)dまたはf軌道に電子が入る。
アルカリ金属(alkali metal)元素:1族中の6元素(Li, Na, K, Rb, Cs, Fr)
アルカリ土類(alkaline earth metal)元素:2族中の4元素(Ca, Sr, Ba, Ra)
ハロゲン(halogen)元素:17族中の5元素(F, Cl, Br, I, At)
希ガス(rare gas, noble gas)元素:18族中の6元素(He, Ne, Ar, Kr, Xe, Rn)
意味のない暗記法:すいへいりーべぼくのふね、なまあるけいりんいえんある、
かっかすかっちばくろーまん鉄コバルトニッケル銅亜鉛
2.2) 原子の構成
原子は、半径105~104Å(1Å=10-8 cm = 0.1
nm)の原子核を中心として電子が半径1~2Åの
電子軌道を廻るモデルで説明される。
原子核は陽子(+1価)と中性子(0価)より構成さ
れ、陽子の数Nが原子番号つまり元素を規定す
る。陽子の数(+N価)に相当する数の電子が電
子軌道に存在し原子は0価である。
●質量(mass)
電子(electron)静止質量(me = 9.1091031 Kg)
陽子(proton: 1.67261027 Kg)や中性子(neutron: 1.67491027 Kg)
の1/1836・・・原子の質量はほとんど原子核(atomic nucleus)が決定
●同位元素また同位体(isotope):陽子の数が同一で、中性子の数が
異なる元素。
水素の場合
1)質量数が1の1H(hydrogen)
2)一個の中性子が加わった重水素(2HまたはD:deuterium)、
3)さらに一個の中性子が加わった三重水素(3HまたはT:tritium)
Dは自然の水素中に1/3500~1/5000含まれている。Tは自然界にも存
在するが、主に核反応により人工的に作られる放射性(radioactive)元
素である。
1H
–
+
2H(D)
+
–
3H(T)
–
+
水素 1H、重水素 2H(D)、三重水素3H(T)の構成
–
電子
図2.4
+ 陽子
原子核
中性子
電子の軌道(s軌道、p軌道、d軌道、f軌道)
図2.15
s軌道
図2.17
d軌道
図2.16
p軌道
電子の詰まり型(電子配置)
パウリの排他原理+フントの規則
図2.18 電子収容の順序。左肩上がり 表2.4 l =0,1,2,3,4の軌道をs(sharp),
の矢印に沿ってs、p、d、f軌道に2個、6 p(principal),d(diffuse),f(fundamental)軌道
とする。4f軌道、5f軌道が未閉殻の元素がラ
個、10個、14個づつ詰める
ンタノイド、アクチノイドである。
n
l=
m=0,1,••l
殻 n1,・
軌道数 2l+1
・・0
1 K 0 1s
2 L 0 2s
1 2p
3 M 0 3s
1 3p
2 3d
4 N 0 4s
1 4p
2 4d
3 4f
5 O 0 5s
1 5p
2 5d
3 5f
4 5g
0
0
1,0
0
1, 0
2, 1, 0
0
1, 0
2, 1, 0
3, 2, 1, 0
0
1, 0
2, 1, 0
3, 2, 1, 0
4, 3, 2, 1, 0
総軌 殻に
道数 入る
n2
総電
子数2n2
1 1
2
1 4
8
3
1 9
18
3
5
1 16
32
3
5
7
1 25
50
3
5
7
9
総
電
子
数
2
10
H,He
Li~Ne
28
Na,Mg
Al~Ar
60
K, Ca
11
0
無機化学 基本単語 1 (30語)
日本語
English
日本語
原子
水素
分子
炭素
陽子
窒素
中性子
酸素
電子
重水素
原子核
3重水素
原子量
鉄
元素
アルカリ金属
スピン
アルカリ土類
周期表
ハロゲン
同位体
希ガス
放射性
遷移金属
閉殻
気体
無機化学
液体
イオン化エネルギー
固体
English