CS184a: Computer Architecture (Structure and Organization) Day 6: January 19, 2005 VLSI Scaling Caltech CS184 Winter2005 -- DeHon.
Download ReportTranscript CS184a: Computer Architecture (Structure and Organization) Day 6: January 19, 2005 VLSI Scaling Caltech CS184 Winter2005 -- DeHon.
CS184a: Computer Architecture (Structure and Organization) Day 6: January 19, 2005 VLSI Scaling 1 Caltech CS184 Winter2005 -- DeHon Today • • • • • VLSI Scaling Rules Effects Historical/predicted scaling Variations (cheating) Limits 2 Caltech CS184 Winter2005 -- DeHon Why Care? • In this game, we must be able to predict the future • Rapid technology advance • Reason about changes and trends • re-evaluate prior solutions given technology at time X. 3 Caltech CS184 Winter2005 -- DeHon Why Care • Cannot compare against what competitor does today – but what they can do at time you can ship • Careful not to fall off curve – lose out to someone who can stay on curve 4 Caltech CS184 Winter2005 -- DeHon Scaling • Premise: features scale “uniformly” – everything gets better in a predictable manner • Parameters: l (lambda) -- Mead and Conway (class) S -- Bohr 1/k -- Dennard 5 Caltech CS184 Winter2005 -- DeHon Feature Size l is half the minimum feature size in a VLSI process [minimum feature usually channel width] 6 Caltech CS184 Winter2005 -- DeHon Scaling • • • • • Channel Length (L) Channel Width (W) Oxide Thickness (Tox) Doping (Na) Voltage (V) 7 Caltech CS184 Winter2005 -- DeHon Scaling • • • • • Channel Length (L) l Channel Width (W) l Oxide Thickness (Tox) l Doping (Na) 1/l Voltage (V) l 8 Caltech CS184 Winter2005 -- DeHon Effects? • • • • • • • • Area Capacitance Resistance Threshold (Vth) Current (Id) Gate Delay (tgd) Wire Delay (twire) Power 9 Caltech CS184 Winter2005 -- DeHon Area l l/k A=L*W A A/k2 130nm 90nm 50% area 2x capacity same area 10 Caltech CS184 Winter2005 -- DeHon Area Perspective 11 Caltech CS184 Winter2005 -- DeHon Capacity Scaling from Intel 12 Caltech CS184 Winter2005 -- DeHon Capacitance • Capacitance per unit area – Cox= eSiO2/Tox – Tox Tox/k – Cox k Cox 13 Caltech CS184 Winter2005 -- DeHon Capacitance • Gate Capacitance Cgate= A*Cox A A/k2 Cox k Cox Cgate Cgate /k 14 Caltech CS184 Winter2005 -- DeHon Threshold Voltage 15 Caltech CS184 Winter2005 -- DeHon Threshold Voltage • VTH VTH /k 16 Caltech CS184 Winter2005 -- DeHon Current • Saturation Current Id=(mCOX/2)(W/L)(Vgs-VTH)2 Vgs=V V /k VTH VTH /k W W/k L L/k Cox k Cox Id Id/k 17 Caltech CS184 Winter2005 -- DeHon Gate Delay tgd=Q/I=(CV)/I V V /k Id Id/k C C /k tgd tgd /k 18 Caltech CS184 Winter2005 -- DeHon Resistance • R=rL/(W*t) • W W/k • L, t similar • RkR 19 Caltech CS184 Winter2005 -- DeHon Wire Delay twire=RC R -> k R C -> C /k twire -> twire • …assuming (logical) wire lengths remain constant... • Assume short wire or buffered wire • (unbuffered wire ultimately scales as length squared) 20 Caltech CS184 Winter2005 -- DeHon Power Dissipation (Static Load) • Resistive Power – P=V*I – V V /k – Id Id/k – P P /k2 21 Caltech CS184 Winter2005 -- DeHon Power Dissipation (Dynamic) • Capacitive (Dis)charging P=(1/2)CV2f V V /k C C /k P P/k3 • Increase Frequency? tgd tgd /k So: f kf ? P P/k2 22 Caltech CS184 Winter2005 -- DeHon Effects? • • • • • • • • Area 1/k2 Capacitance 1/k Resistance k Threshold (Vth) 1/k Current (Id) 1/k Gate Delay (tgd) 1/k Wire Delay (twire) 1 Power 1/k2 1/k3 23 Caltech CS184 Winter2005 -- DeHon ITRS Roadmap • Semiconductor Industry rides this scaling curve • Try to predict where industry going – (requirements…self fulfilling prophecy) • http://public.itrs.net 24 Caltech CS184 Winter2005 -- DeHon MOS Transistor Scaling (1974 to present) S=0.7 [0.5x per 2 nodes] Pitch Source: 2001 ITRS - Exec. Summary, ORTC Figure Caltech CS184 Winter2005 -- DeHon Gate [from Andrew Kahng] 25 Half Pitch (= Pitch/2) Definition Metal Pitch (Typical DRAM) Source: 2001 ITRS - Exec. Summary, ORTC Figure Caltech CS184 Winter2005 -- DeHon Poly Pitch (Typical MPU/ASIC) [from Andrew Kahng] 26 Node Cycle Time: 0.7x 0.7x Log Half-Pitch Scaling Calculator + 1994 NTRS .7x/3yrs Actual .7x/2yrs Linear Time 250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16 0.5x N N+1 Node Cycle Time (T yrs): N+2 *CARR(T) = [(0.5)^(1/2T yrs)] - 1 * CARR(T) = Compound Annual Reduction Rate (@ cycle time period, T) Source: 2001 ITRS - Exec. Summary, ORTC Figure Caltech CS184 Winter2005 -- DeHon CARR(3 yrs) = -10.9% CARR(2 yrs) = -15.9% [from Andrew Kahng] 27 ITRS Roadmap Acceleration Continues…Gate Length Technology Node - DRAM Half-Pitch (nm) 1000 2001 MPU Printed Gate Length 2001 MPU Physical Gate Length 1999 ITRS MPU Gate-Length 100 2-year Cycle 3-year Cycle 10 1995 1998 2001 2004 2007 2010 2013 2016 Year of Production Source: 2001 ITRS - Exec. Summary, ORTC Figure Caltech CS184 Winter2005 -- DeHon [from Andrew Kahng] 28 ITRS 2003 Gate/Wire Scaling 29 Caltech CS184 Winter2005 -- DeHon What happens to delays? • If delays in gates/switching? • If delays in interconnect? • Logical interconnect lengths? 30 Caltech CS184 Winter2005 -- DeHon Delays? • If delays in gates/switching? – Delay reduce with 1/k [l] 31 Caltech CS184 Winter2005 -- DeHon Delays • Logical capacities growing • Wirelengths? – No locallity: Lk – Rent’s Rule • L n(p-0.5) • [p>0.5] (slower!) 32 Caltech CS184 Winter2005 -- DeHon Compute Density • Density = compute / (Area * Time) k3>compute density scaling>k k3: gates dominate, p<0.5 k2: moderate p, good fraction of gate delay – [p from Rent’s Rule again – more on Day12] k : large p (wires dominate area and delay) 33 Caltech CS184 Winter2005 -- DeHon Power Density • P-> P /k2 (static, or increase frequency) • P-> P/k3 (dynamic, same freq.) • A -> A/k2 • P/A P/A … or … P/kA 34 Caltech CS184 Winter2005 -- DeHon Cheating… • Don’t like some of the implications – High resistance wires – Higher capacitance – Quantum tunnelling – Need for more wiring – Not scale speed fast enough 35 Caltech CS184 Winter2005 -- DeHon Improving Resistance • • • • R=rL/(W*t) W W/k L, t similar RkR Don’t scale t quite as fast. Decrease r (copper) 36 Caltech CS184 Winter2005 -- DeHon Capacitance and Leakage • Capacitance per unit area – Cox= eSiO2/Tox – Tox Tox/k – Cox k Cox Reduce Dielectric Constant e (interconnect) or Substitute for scaling Tox (gate quantum tunneling) 37 Caltech CS184 Winter2005 -- DeHon Threshold Voltage 38 Caltech CS184 Winter2005 -- DeHon ITRS 2003 Table 81a 39 Caltech CS184 Winter2005 -- DeHon High-K dielectric Survey Wong/IBM J. of R&D, V46N2/3P133--168 Caltech CS184 Winter2005 -- DeHon 40 Wire Layers = More Wiring 41 Caltech CS184 Winter2005 -- DeHon Typical chip cross-section illustrating hierarchical scaling methodology Wire Global (up to 5) Via Passivation Dielectric Etch Stop Layer Dielectric Capping Layer Copper Conductor with Barrier/Nucleation Layer Intermediate (up to 4) Local (2) Caltech CS184 Winter2005 -- DeHon Pre Metal Dielectric Tungsten Contact Plug [from Andrew Kahng] 42 Improving Gate Delay tgd=Q/I=(CV)/I V V /k Id=(mCOX/2)(W/L)(Vgs-VTH)2 Id Id/k C C /k tgd tgd /k Lower C. Don’t scale V. Caltech CS184 Winter2005 -- DeHon Don’t scale V: VV IkI tgd tgd /k2 43 …But Power Dissipation (Dynamic) • Capacitive (Dis)charging P=(1/2)CV2f V V /k C C /k P P/k3 • Increase Frequency? f kf ? P P/k2 If not scale V, power dissipation not scale. 44 Caltech CS184 Winter2005 -- DeHon …And Power Density • P P (increase frequency) • P> P/k (dynamic, same freq.) A A/k2 • P/A kP/A … or … k2P/A • Power Density Increases …this is where some companies have gotten into trouble… 45 Caltech CS184 Winter2005 -- DeHon Physical Limits • Doping? • Features? 46 Caltech CS184 Winter2005 -- DeHon Physical Limits • Depended on – bulk effects • doping • current (many electrons) • mean free path in conductor – localized to conductors • Eventually – single electrons, atoms – distances close enough to allow tunneling 47 Caltech CS184 Winter2005 -- DeHon What Is A “Red Brick” ? • Red Brick = ITRS Technology Requirement with no known solution • Alternate definition: Red Brick = something that REQUIRES billions of dollars in R&D investment Caltech CS184 Winter2005 -- DeHon [from Andrew Kahng] 48 The “Red Brick Wall” - 2001 ITRS vs 1999 Source: Semiconductor International - http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA187876 Caltech CS184 Winter2005 -- DeHon [from Andrew Kahng] 49 Conventional Scaling • Ends in your lifetime • …perhaps in your first few years after grad school… 50 Caltech CS184 Winter2005 -- DeHon Finishing Up... 51 Caltech CS184 Winter2005 -- DeHon Big Ideas [MSB Ideas] • Moderately predictable VLSI Scaling – unprecedented capacities/capability growth for engineered systems – change – be prepared to exploit – account for in comparing across time – …but not for much longer 52 Caltech CS184 Winter2005 -- DeHon Big Ideas [MSB-1 Ideas] • Uniform scaling reasonably accurate for past couple of decades • Area increase k2 – Real capacity maybe a little less? • Gate delay decreases (1/k) • Wire delay not decrease, maybe increase • Overall delay decrease less than (1/k) 53 Caltech CS184 Winter2005 -- DeHon