The Unscrambler® A Handy Tool for Doing Chemometrics Prof. Waltraud Kessler Prof. Dr.
Download ReportTranscript The Unscrambler® A Handy Tool for Doing Chemometrics Prof. Waltraud Kessler Prof. Dr.
The Unscrambler® A Handy Tool for Doing Chemometrics Prof. Waltraud Kessler Prof. Dr. Rudolf Kessler Hochschule Reutlingen, School of Applied Chemistry Steinbeistransferzentrum Prozesskontrolle und Datenanalyse Camo Process AS Topics • The Unscrambler® by Camo • Many possibilities for Analysing Data • Examples • NIR-Spectra • Fluorescence Exitation Emission Spectra • Life Demonstration • 3-way Data Handling 2 The Unscrambler Main Features ® Exploratory Analysis Descriptive statistics Principal Component Analysis (PCA) Multivariate Regression Analysis Partial Least Squares regression (PLS) Principal Component Regression (PCR) Multiple Linear Regression (MLR) Prediction Classification Soft Independent Modeling of Class Analogies (SIMCA) PLS-Discriminant Analysis Experimental Design Fractional and full factorial designs, Placket-Burmann, Box Behnken, Central Composite, Classical mixture designs, D-optimal designs ANOVA, Response Surface ANOVA, PLS-R 3 The Unscrambler Also Features… ® • • • • • • Raw data checks Data preprocessing Over 100 pre-defined plots Automatic outlier detection Automatic variable selection … and more 4 Example: Fiber Board Production In-situ Measurements of Fibres in Blowpipe NIR FOSS Process Spectrometer with fibre bundle and diffuse reflectance probe 400 - 2200 nm Blowpipe: ~ 180°C ~ 5 bar ~ velocity of fibres ~ 20 m/s 5 Fiber Board Production NIR-Spectra of Fibres in Blowpipe Spectra contain the following information: • kind of wood • fineness • degradation of lignin Information is hidden within complete wavelength range Information overlaps – separation by PCA 6 Principal Component Analysis Separate the Overlapping Information mRf ScoresmRf mRf PC2 mRf PC2 = Fineness coarse fine mRf 0.05 0 oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf -0.05 -0.10 RESULT 8,X-expl : 72%,24% oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRf oRg oRg oRg oRg oRg o Rg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg oRg -0.05 0 PC1 = kind of wood: Spruce mRf mRf mRf mRf mRf mRf mRfm Rf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRf mRg mRf mRf mRg mRg mRg mRg mRf mRf mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRgmRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRg mRgmRg PC1 0.05 0.10 Spruce with bark 7 Principal Component Analysis Scores and Loadings for PC1 and PC2 X-loadings X-loadings 0.1 0.1 0 0 -0.1 X-variables 500 RESULT 9, PC(X-expl):1(72%) 1000 1500 2000 -0.1 X-variables 500 RESULT 9, PC(X-expl):2(24%) PC1:Kind of wood 1000 1500 2000 PC2:Fineness Scores Spruce with bark Sc ores 0.05 0.05 fine 0 0 Spruce -0.05 coarse -0.10 -0. 05 Sampl es 06:21:49 _13.11. 11:43:52 _13.11. RESULT 2, PC(X-e xpl ):1(95%) 07:05:02 _14.11. 14:15:56 _14.11. Samples 06: 21:49_13. 11. 10: 19:54_13. 11. RESU LT5, PC(X-expl): 2(24%) 14: 37:28_13. 11. 08: 47:24_14. 11. 14: 06:48_14. 11. 8 PLS Regression Degradation of Lignin for Spruce Scores PC2 0.02 0.01 2.2 2.2 2.2 2.2 0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Predicted Y 3.0 2.9 2.9 2.9 2.9 2.92.9 2.92.9 2.9 2.9 2.9 Elements: Slope: Offset: Correlation: RMSEP: SEP: Bias: 2.7 2.9 2.4 -0.01 30 0.910025 0.237915 0.941680 0.085069 0.086517 0.000981 2.9 -0.02 PC1 -0.06 0 -0.03 0.03 X-variance RESULT 16, (Y-var, PC): (SFC,2) Residual Sample Variance 0.04 0.0000015 0.03 0.0000010 0.02 0.5E-06 0.01 0 Samples 10 RESULT 16, PC:2 2 3.0 2.7 2.4 2.1 0.06 RESULT 16,X-expl: 80%,5% Y-expl: 88%,6% 0.0000020 Measured Y 2.1 20 Y-variance Residual Sample Variance 0 Samples 10 30 30 20 RESULT 16, PC:2 2 9 Analysing Three-Way Data od e3 L M ode 1 M Two different types of modes are distinguished: • Sample mode - O • Variable mode - V I M ode 2 K Sample mode -usually first mode Variable mode -usually second and/or third mode OV2 or O2V 10 Substructures in Three-way Arrays K vertica l slice s L f ro nta l slice s I hor izo ntal slice s Three-way arrays can be divided into different slices Decide which slices are put together to form a two-dimensional array 11 Three-way Data Example: Fluorescence Excitation Emission Spectra • Samples: 32 fibres from steam treated and ground woodchips • X-Data: Fluorescence Excitation-Emission spectra (250 - 575 nm) x (300 - 600 nm) • Y-Data: Kind of wood (beech and spruce) Severity of treatment (a combination of time and temperature) Age of wood (fresh and old) Plate gap of grinding ( fine and coarse). 12 Three-way Data Example: Fluorescence Excitation Emission Spectra Beech Spruce Treatment: low middle severe 13 Fluorescence Excitation Emission Spectra Results of N-PLSR 14 Fluorescence Excitation Emission Spectra x1 and x2 Loading Weights 15 Possibilities for Three-way Data in The Unscrambler® • 3D Data Import: ASCII, Excel, JCAMP-DX, Matlab • Swapping: toggle freely between the 6 OV2 and 6 O2V layouts of a 3D table • Matrix plots: Contour and landscape plots of the samples • Variable sets: Create Primary variable sets and Secondary Variables sets 16 The Unscrambler® Benefits • • • • Easy to make models Easy to interpret results High user-friendliness Less time spent doing data analysis, more information extracted from your data • Faster decision making 17 Try The Unscrambler® 9.2 for 30 days Free trial version available on www.camo.com Fully functioning version Includes the Unscrambler user manual Includes 7 tutorial exercises and associated files Includes 3 demonstration tours For details, contact: CAMO Software India Pvt. Ltd., 14 -15, Krishna Reddy Colony, Domlur Layout, Bangalore - 560071, INDIA [email protected] 18