Sequential Aggregate Signatures and Multisignatures Without Random Oracles Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Download ReportTranscript Sequential Aggregate Signatures and Multisignatures Without Random Oracles Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.
Sequential Aggregate Signatures and Multisignatures Without Random Oracles Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters 1 Secure BGP BGP “Speakers” send path updates messages S-BGP sequence of messages + sigs. 4096 byte size limit (M1,1) (M1,1), (M2,2), (M3,3) (M1,1), (M2,2) 2 Aggregate Sigs [BGLS03] Sign Aggregate 3 Aggregate Signatures [BGLS03] A single short aggregate provides nonrepudiation for many different messages under many different keys More general than multisignatures Applications: X.509 certificate chains Verisign Versign Europe Secure BGP route attestations PGP web of trust NatWest NatWest WWW 4 BGLS Aggregate Sigs BLS Sigs: PK = ga Sign(SK,M): SK=a =H(M)a Verify(PK,M,): e(,g)=e( H(M), PK) Secure in R.O. Model --- Deterministic Signatures 5 BGLS Aggregate Sigs PKi = gai SKi=ai Sign(SKi,Mi): i=H(Mi)ai Aggregate(1,…n): *=i=1…n i Verify(PKi,M1,…,Mn ,*): e(*,g)= i=1,…n e( H(Mi), PKi) Verification requires n pairings 6 Difficulty w/o Random Oracles Known efficient signatures have a random component • Strong RSA sigs[GHR’ 99, CS’99] • B-Map [BB’04,CL’04.W’05] • Tree- sigs Difficult to aggregate • Independent signatures => Independent randomness 7 Sequential Aggregates [LMRS’04] Sign and Aggregate Signing and Aggregation are a single operation Inherently sequenced; not appropriate for PGP 8 Our Approach Build from W’05 signatures Signer uses same randomess from previous sig Then re-randomizes 9 Our Aggregate Sigs W’05 Sigs: PK = e(g,g)a ,h, u1,…,um Sign(SK,M): SK=a =(’,’’)=ga (h i=1,…m uMi)r , g-r Verify(PK,M,): e( ’,g) e( ’’, h i=1,…m uMi)=e(g,g)a Secure w/o R.O.s 10 Our Aggregate Sigs PKi = e(g,g)ai ,hi=gyi’, ui,1=gyi,1…,um, =gyi,m SK =ai ,yi’, yi,1,…,yi,m Know DL PK Agg(SKi,Mi,*=1,2): x=DL(h j=1,…m uMi,j ) *=(’,’’)=ga 2x 1, 2 Verify(PK,M1,…Mn,*=(’,’’)): e( ’,g) e( ’’, i=1…n hj j=1,…m uMi,j)=i=1…n e(g,g)ai 11 Comparisons Scheme R.O. Sequential Size Ver. Sign BGLS YES NO 160 bits n+1 parings 1 exp. LMRS-2 YES YES 1024 bits 4 mult. Ver. + 1 exp. Ours NO YES 320 bits 2 pairings Ver. + 1 exp. Shorter than LMRS Faster Ver. than BGLS 12 Summary and Open Problems Sequential Aggregate Signatures w/o R.O. • Use same randomness sequentially • Arguably better Performance than R.O. schemes Multi-Sigs and Verifiable Enc. Sigs Shorter Public Parameters • Certificate Chains Full Aggregate Signatures 13 THE END 14 Sequential Aggregate ChosenKey Model AggSign() oracle Adversary Nontriviality: σ* is a valid sequential aggregate challenge key pk = pkj* for some j; No oracle query at pk1*,…,pkj*;M1*,…,Mj*. 15