Gary DeBoer Associate Professor of Chemistry LeTourneau University Oct. 4, 2007 11:00 am, C101 Modeling summer fashions in chemistry: The far out, radical behavior of the.
Download ReportTranscript Gary DeBoer Associate Professor of Chemistry LeTourneau University Oct. 4, 2007 11:00 am, C101 Modeling summer fashions in chemistry: The far out, radical behavior of the.
Gary DeBoer Associate Professor of Chemistry LeTourneau University Oct. 4, 2007 11:00 am, C101 Modeling summer fashions in chemistry: The far out, radical behavior of the O atom Dumb Modeling surfaces, Can tell us things, like about life on Mars April 6, 1998 Viking Energy = function (distance between atoms) 10.4 E = F(q1,q2) Q. How do we model the shape of our surface? A. We use computational chemistry software. Q. Which? A. Gaussian Q. What does the software do? A. It calculates the solution to the Shrodinger Equation. HY = EY Types of Modeling 1. Energies and geometries a. Molecular mechanics b. Semi-empirical c. Ab initio i. Hartree-Fock (HF) ii. Perturbation methods (MP2) iii. Density Functional Theory (DFT) iv. Compound methods, G3, CBS-QB3 2. Kinetics RRKM using Multiwell 3. Ab intio/Molecular Dynamics NWChem/Venus The call of the O atom… Q. Why in the world oxygen atom chemistry? A. My chemistry is not of this world. O + NO a NO2* Chang, General Chemistry http://www.vs.afrl.af.mil/Gallery/ http://jan.ucc.nau.edu/doetqp/courses/env440/env440_2/lectures/lec32/lec32.htm What we want to model? O(3P) TS1a C O H INT1c O O(3P) O O(3P) O -addition to O C C INT1a INT5 H O H H TS3 TS1b O(3P) + HCO TS1c C -abstraction of H -addition to C INT1b TS2 O O OH + CO C INT2 H TS5 O INT3 TS8 O C Atoms and small molecules are best addressed from an ab initio perspective TS10 TS6 TS4 H TS7 H O C O O +H TS9 O C INT 4 B2 B3 A1 A2 D1 1.15946 2.75115 131.36645 126.41384 180. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------! Initial Parameters ! ! (Angstroms and Degrees) ! ------------------------------------------! Name Value Derivative information (Atomic Units) ! -----------------------------------------------------------------------! B1 1.11 calculate D2E/DX2 analytically ! ! B2 1.1595 calculate D2E/DX2 analytically ! ! B3 2.7512 calculate D2E/DX2 analytically ! ! A1 131.3664 calculate D2E/DX2 analytically ! ! A2 126.4138 calculate D2E/DX2 analytically ! ! D1 180.0 calculate D2E/DX2 analytically ! -----------------------------------------------------------------------Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------1 6 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 1.109986 3 8 0 0.870173 0.000000 -0.766255 4 8 0 -2.688818 0.000000 -0.582311 --------------------------------------------------------------------Distance matrix (angstroms): 1 2 3 4 1 C 0.000000 2 H 1.109986 0.000000 3 O 1.159460 2.068207 0.000000 4 O 2.751151 3.177045 3.563742 0.000000 Stoichiometry CHO2(2) Framework group CS[SG(CHO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Want to model the chemistry to explain and predict experimental work. Overview 1. Introduce the ab initio methods 2. Report on current ab initio results 3. Present future goals for molecular dynamics 4. Highlight and review Yarnell Hill, a curvy stretch of Arizona highway. HY EY 1 2 1 2 1 Z Z Z 1 1 1 2 ... 2n ... ... 2 2 r1 r2 rn r12 rmn 2 Y0 Y0 (1)Y0 (2)...Y0 (n) Y1 Y1 (1)Y1 (2)...Y1 (n) ... Yk Yk (1)Yk (2)...Yk (n) Y EY Douglas Hartree Self Consistent Field method for finding Y, and then E. (1928) 1. Assumes that Y is a product of one electron, Y(n)’s, initially guessed, Y0 . 2. The individual Y0(n)’s are each optimized by letting each of the n electrons pass through a field produced by an average influence of all the remaining electrons. After each Y0(n)’s is optimized once, we produce Y1. 3. This process is repeated again and again until the resulting energy no longer changes and we have converged upon the best Y, Yk. 4. In 1930, Fock and Slater, corrected the Hartree method for spin, thus creating the Hartree-Fock Self Consistent Field, or HF-SCF, method. 5. Computational solutions are found using methods of linear algebra. The HF-SCF method produces an error called electron correlation Fixing the electron correlation problem Approach 1. Moller-Plesset (MP) Theory, 1934, the pure, but slower route. EMP 2 E total HF E The E2 term comes from a new H’Y = E2Y in which ‘virtual orbitals’ are made available for electrons to enter. The result is, less crowded, happier electrons, at lower energy. Came to practical development in 1975, by Pople. The MP2 and MP4 methods require lots of integrals for all the differing components of Y a slow. 1938 or earlier 2 Milton Plesset Edward Teller Niels Bohr Otto Frisch Fritz Kalckar Fixing the electron correlation problem Approach 2, Density Functional Theory, DFT, the less than pure, somewhat semiempirical, but faster route. Fermi and Dirac, 1920’s to Parr and Yang, 1989 replace Y0 Y0 (1)Y0 (2)...Y0 (n) with ( x, y, z ) so F ( 0 ) E0 as was HY0 EY0 Decreases all the variables of Y to only three: x,y, and z. E0 Z nuclei A (r1 ) r1A *external potential 1 2n 1 (r ) (r2 ) dr Yi (1) 12 Yi (1) 1 dr1dr2 EC 2 i 1 2 r12 + k.e. of electrons + electrostatic repulsion Exc is determined empirically + exchange correlation functional B3LYP functional Becke 3 Lee-Yang-Parr EBLYP P2 E HF X P1 (P4 E Slater X P3E ) P6 P5E Becke X LYP C These parameters are adjustable and Song reports having adjusted them to fit the DFT/B3LYP/6-31G(d) results to higher level calculations for his OH + CO work. These optimized parameters for the OH + CO reaction should also be valid for our O + HCO reaction. Accurate and fast DFT/B3LYP/6-31G(d) calculation should benefit our MD/QM calculations using Venus/NWChem. Y‘s are linear combinations of atomic orbitals LCAO’s, each AO being modeled with basis sets STO-3G 1 Atomic Orbital = 1 Slater Type Orbital = 3 Gaussians. 1 contracted function = 3 primitives Gaussians. An example of a minimal basis set 1 atomic orbital = 1 contracted function (STO-3G) Eg. Carbon, element 6, would be modeled with 1s, 2s, and 3 2p’s atomic orbitals, 5 contracted STO-3G’s 15 primitive Gaussians. 6-31G(d) or 6-31G* A split valence basis set with polarization. The core oribitals are described with 1 contracted function composed of 6 primitive Gaussian functions The valence orbitals are split into inner and outer shells. The inner valence shell 1 contracted function = 3 primitive Gaussian functions. The outer valence shell 1 contracted function = 1 primitive Gaussian function. Eg. Carbon, element 6, 1s, 2s, 2s’, 3 2p, and 3 2p’ atomic orbitals = 9 contracted functions, 6 +(3 + 1) + 3*(3 + 1)=22 primitive Gaussians. The (d) or the * denotes that polarization has been added. This adds 6 d orbitals (1 primitive gaussian) to the previous 9 contracted basis functions for a total of 15 contracted basis functions or 28 primitives . C, 2 O’s, H, would give 3*15 + 2 (1s +1s’), hydrogen doesn’t get a d) = 47 contracted functions, or 88 primitive Gaussians. Fixing other problems like polarization, diffusion, and so on through compound methods G3 CBS-QB3 complete basis set 1. HF/6-31G(d) geometry optimization and frequency 1. DFT/B3LYP/CBSB7 geometry optimization and frequency 2. MP2(full)/6-31G(d) geometry optimization 2. CCISD(T)/6-31+G(d) energy 3. QCISD(T,E4T) 6-31G(d)energy 4. MP4/6-31G+(d) 5. MP4/6-31G(2df,p) 3. MP4SDQ/CBSB4 energy 4. MP2/CBSB3 energy 5. CCSD(T) energy 6. Empirical spin correction 6. MP2(full)/GTlarge 7. Empirical spin correction Both methods estimate polarization, diffusion, and other such things by comparing outcomes from the different steps. Small basis set calculations can then predict the larger basis set results. Table 1 Calculated energies in kJ/mole for species in the O + CHO system on a doublet surface. Method a (UHF 6-31G(d)) DFT/B3LYP/CBSB7 ZPE 37.75 Relative Relative Energy Energy + ZPE 0.00 37.75 ZPE 33.93 Relative Relative Energy Energy + ZPE 0.00 33.93 39.29 38.35 43.24 41.82 38.5 59.59 -29.19 10.1 -17.35 21.00 -240.7 -197.46 -239 -197.18 -232.51 -194.01 -164.29 -104.7 39.41 37.49 39.31 38.30 35.44 51.38 -20.27 -8.01 -347.66 -344.11 -338.12 -428.78 INT 2b HC(O)O Cs 58.43 -258.67 -200.24 H --- CO2 33.79 H + CO2 INT 3 trans HOCO INT 4 cis HOCO INT 5 trans HCOO Species O + CHO INT 1a O -- CHO * INT 1b O -- HCO INT 1c O -- OCH OH -- CO OH -- OC OH + CO INT 2a HC(O)O C2v Transition States TS1a TS1b TS1c TS2 TS3* TS4 TS5 TS6 TS7 TS8 TS9 TS10 19.14 29.48 -308.35 -305.81 -302.68 -377.40 -231.01 31.23 33.47 60.11 59.89 38.35 -264.69 -231.22 -250.84 -190.73 -251.79 -191.9 -1.74 36.61 30.77 -450.03 -418.80 -449.70 -418.93 55.12 54.14 44.23 -477.22 -422.10 -471.37 -417.23 61.36 105.59 41.49 311.32 -264.8 352.81 39.25 40.36 87.10 68.34 126.35 108.70 DFT/SRP-B3LYP/6-31(d) ZPE 35.74 -34.55 6.86 -139.17 -101.84 -165.88 -117.07 -215.43 -160.3 9.38 44.13 -83.4 -47.6 -140.57 -93.99 37.96 33.06 38.55 50.00 34.15 33.66 39.20 -322.5 -405.94 -345.53 -436.14 -287.33 -369.16 -338.21 -284.54 -372.88 -306.98 -386.14 -253.18 -335.50 -299.01 ZPE 41.78 40.46 36.62 80.19 -307.30 -302.22 -291.12 -356.27 -265.52 -261.76 -254.50 -276.08 41.2 37.38 36.97 40.56 41.12 35.07 60.96 54.15 -384.59 -330.44 52.81 32.99 -386.89 -353.90 30.73 31.90 -385.94 -354.04 57.37 56.70 -410.60 -353.23 -407.78 -351.08 30.34 55.33 54.79 41.68 151.17 41.42 41.41 37.33 48.81 55.13 34.75 35.8 46.58 Relative Relative Energy Energy + ZPE 0.00 35.74 MP2 6-31G(d) full 202.3 192.85 243.72 39.73 -233.51 -193.78 44.27 52.24 35.08 35.00 42.71 -299.12 -370.65 -194.00 -280.93 -278.92 -254.85 -318.41 -158.92 -245.93 -236.21 44.48 42.79 40.46 36.46 41.93 39.56 111.93 43.12 51.03 36.33 35.24 42.48 Relative Energy 0.00 -13.12* -4.89 -3.18 -352.66 -346.05 -338.84 -409.01 Relative Energy + ZPE 28.07 32.49 33.79 -312.10 -304.93 -303.77 -348.05 CBSQB3 G3 Ave. CBS and G3 Relative Energy 0.00 0.00 0.00 -35.65* -35.66 -7.99 -13.55 -10.77 -12.99 -12.78 -12.89 -370.78 -372.3 -371.54 -368.5 -359.57 -364.04 -365.83 -366.88 -366.36 -415.16 -406.57 -410.87 -395.76 -342.95 -399.88 -399.88 -510.19 -479.46 -471.28 -473.94 -472.61 -510.05 -479.71 -471.34 -469.35 -470.35 -464.70 -409.37 -472.94 -468.47 -470.71 -460.14 -405.35 -464.48 -460.65 -462.57 77.91 77.91 173.20 158.69 252.32 99.86 34.11 -292.38 -385.29 -326.54 -419.96 -225.66 -333.21 -305.55 217.68 201.48 292.78 136.32 76.04 -252.82 -273.36 -283.42 -368.93 -189.33 -297.97 -263.07 98.84 65.28 163.87 -332.23 -332.23 -411.76 -368.75 -438.62 -272.59 -362.08 -351.95 * see text for details These numbers allow us to build our potential energy surface 75.68 69.92 34.82 -328.37 -408.49 -362.19 -434.71 -271.4 -366.68 -355.11 98.84 70.48 163.87 69.92 34.82 -330.30 -410.13 -365.47 -436.67 -272.00 -364.38 -353.53 O(3P) TS1a C O H INT1c O O(3P) O O(3P) O C C INT1a INT5 H O H H TS3 TS1b TS1c C INT1b TS2 O O trans-HCOO INT2 200 100 TS1c TS2 0 kJ/mole INT1 H O INT3 TS1b TS3 TS8 OH + CO -100 O C TS8 TS4 TS6 -400 -500 INT2 INT3 TS10 TS5 TS7 INT4 -600 Reaction Coordinate TS7 H O O +H TS9 -300 H O C -200 TS10 TS6 TS4 TS5 TS1a OH + CO C O TS9 H + CO2 C INT 4 Some illustrative examples TS6 IRC TS8 IRC TS1a IRC k = A exp(-Ea/RT) Spencer Falls Greensville, Ontario Niagara Falls, NY Smart E = mc2 PV=nRT Brooke Shields after having taken general chemistry at LeTourneau University Smart Modeling of Kinetics RRK Rice, Ramsperger, and Kassel, 1927 RRKM = RRK + modification to correct for zero point energy (ZPE) Sum of states for the transition species G( E ) k (E) N ( E ) Density of states of reactants Transition State Products Reactants O(3P) TS1a C O H INT1c O O(3P) O O 3 O( P) C C INT1a INT5 H O H H TS3 TS1b TS1c C INT1b TS2 O O OH + CO C INT2 H O INT3 TS8 TS10 TS6 TS4 TS5 O C H TS7 H O C O O +H TS9 O C INT 4 Table 4: Relative Branchng Ratios for Product Channels under Scenario A conditions O+C(O)H (K) (Torr) 300 760 0.53 O( P) 0.001 600 760 C O TS1a 0.5 H 0.001 INT1c O 3 900 760 O(0.01 P) O 0.5 0.02 O C 3 O( P) C 0.001 0.01 O INT5 H INT1a H 1200 760 0.01 H C 0.5 0.03 TS3 TS1b TS1c TS2 0.001 INT1b 0.01 1500 760 0.02 O 0.5 0.07 O C OH + CO 0.001 0.03 1800 760 0.06 H INT2 0.5 0.11 0.001 0.10 TS10 TS6 TS4 TS5 2100 760 0.15 0.5 0.21 H 0.001 0.18 INT3 O TS7 2400 760 0.25 O C H TS8 0.5 0.37 O O 0.001 0.32 2700 760 0.37 O C C +H TS9 0.5 INT 4 0.53 O 0.001 0.55 3000 760 0.65 0.5 0.75 0.001 0.66 O+OCH 0.01 Activating Complex in Bold OH+CO H+CO2 O+C(O)H O+OCH 57.62 42.38 0.06 1.96 59.49 40.51 0.05 1.58 58.75 41.25 0.05 1.62 58.27 41.73 0.10 3.48 59.84 40.16 0.09 3.40 58.79 41.21 0.09 3.65 59.16 40.83 0.18 6.05 60.43 39.55 0.19 5.62 59.41 40.58 0.21 5.84 59.70 40.29 0.24 8.36 60.95 39.02 0.25 8.40 59.93 40.06 0.26 8.49 60.29 39.69 0.41 10.60 61.46 38.47 0.43 10.86 60.52 39.45 0.42 10.62 60.57 39.37 0.59 12.83 62.03 37.86 0.58 12.57 60.86 39.04 0.67 12.79 61.15 38.73 0.70 14.77 62.82 36.97 0.73 13.93 61.42 38.40 1.08 14.38 61.55 38.20 0.96 16.24 63.32 36.31 1.08 15.65 61.76 37.92 1.23 15.88 61.94 37.69 1.36 17.47 63.53 35.94 1.36 17.03 62.46 36.99 1.73 16.99 62.48 36.87 1.86 18.43 63.77 35.47 1.64 17.70 62.65 36.69 1.94 18.06 OH+CO 61.40 61.67 61.34 60.27 60.89 60.51 59.54 59.63 60.24 58.47 58.44 58.27 58.13 57.36 57.42 55.78 57.30 56.44 55.35 56.75 55.86 55.43 56.01 55.86 55.37 55.08 55.31 55.47 55.54 54.81 H+CO2 36.58 36.70 36.99 36.15 35.62 35.75 34.23 34.56 33.71 32.93 32.91 32.98 30.86 31.35 31.54 30.80 29.55 30.10 29.18 28.59 28.68 27.37 27.26 27.03 25.80 26.53 25.97 24.24 25.12 25.19 Table 5: Relative Branchng Ratios for Product Channels under Scenario B conditions O+C(O)H O+OCH O+HCO OH+CO (K) (Torr) 300 760 0.01 59.28 0.5 0.01 0.02 59.26 0.001 55.30 600 760 0.09 59.54 O(3P) 0.5 0.01 0.05 59.34 0.001 0.01 0.07 54.12 C O TS1a 900 760 0.01 0.24 H 60.26 INT1c 0.5 0.04 0.27 59.94 O 3 0.001 0.01 0.33 54.87 O( P) O O C 1200 760 0.02 0.76 60.05 O(3P) C 0.5 0.04 0.63 60.21 O H INT5 INT1a H 0.001 0.01 55.91 H 0.77 C 1500 760 0.05 1.50 59.59 INT1b TS3 TS1b TS1c TS2 0.5 0.10 1.67 59.81 O 0.001 0.03 1.57 56.42 1800 O C760 0.11 OH + CO 3.02 58.45 0.5 0.18 3.18 59.00 H INT2 0.001 0.07 3.18 55.84 TS10 2100 760 0.18 5.35 56.35 TS6 TS4 TS5 0.5 0.26 5.42 57.07 0.001 0.10 5.45 54.38 H INT3 O 2400 760 0.31 TS7 0.01 7.85 54.36 O C H8.11 0.42 54.90 TS8 0.5 O 0.001 0.18 7.96 52.87 O 2700 760 0.50 0.01 O C10.85 51.61 C +H TS9 0.52 0.5 0.01 INT 10.83 52.36 4 O 0.001 0.39 10.79 50.66 3000 760 0.67 0.01 14.09 48.91 0.5 0.79 0.02 13.70 49.73 0.001 0.65 0.02 14.04 47.90 Activating Complex in Bold H+CO2 O+C(O)H O+OCH O+HCO 40.71 0.06 1.96 3.61 40.71 0.07 1.46 4.19 44.70 0.08 1.52 4.15 40.37 0.08 3.60 5.30 40.60 0.11 3.42 5.72 45.80 0.14 3.49 5.67 39.49 0.21 6.31 7.96 39.75 0.18 5.85 8.00 44.79 0.12 5.80 8.63 39.17 0.30 8.62 11.10 39.12 0.26 8.69 12.40 43.31 0.28 8.88 11.84 38.86 0.41 10.73 15.51 38.42 0.43 11.11 16.65 41.98 0.46 10.78 16.03 38.42 0.60 12.63 20.01 37.64 0.55 13.30 20.98 40.91 0.63 12.83 20.27 38.12 0.91 14.31 25.22 37.25 0.88 15.07 25.56 40.07 0.83 14.44 24.73 37.47 1.15 15.80 29.13 36.57 1.14 16.47 30.15 39.00 1.27 16.35 29.37 37.03 1.52 17.29 33.61 36.28 1.62 17.39 34.66 38.16 1.55 17.40 33.14 36.32 2.03 17.80 38.00 35.76 1.96 18.40 37.91 37.39 1.96 18.43 36.89 OH+CO 57.23 57.00 56.63 55.33 54.85 54.93 51.80 51.60 50.62 47.53 46.12 46.11 42.18 41.34 41.05 37.07 35.97 36.45 31.34 29.81 30.96 26.45 25.23 25.92 21.76 20.89 21.84 18.16 17.25 17.72 H+CO2 37.14 37.28 37.62 35.69 35.90 35.77 33.72 34.37 34.83 32.45 32.53 32.89 31.17 30.47 31.68 29.69 29.20 29.82 28.22 28.68 29.04 27.47 27.01 27.09 25.82 25.44 26.07 24.01 24.48 25.00 O+HCO 0.06 0.04 0.04 0.28 0.29 0.26 0.95 0.95 1.07 2.59 2.98 2.73 6.08 6.11 5.92 10.73 10.94 11.04 17.27 17.19 17.20 24.39 24.86 24.89 31.82 32.47 33.24 40.22 40.00 40.37 OH+CO 99.94 99.96 99.96 99.72 99.71 99.74 99.05 99.05 98.93 97.41 97.02 97.27 93.92 93.89 94.08 89.27 89.06 88.96 82.73 82.81 82.80 75.61 75.14 75.11 68.18 67.53 66.76 59.78 60.00 59.63 Table 6: Average Branching Ratios Under Scenario A and Scenario B conditions (Torr) 760 0.5 0.001 O(3P) 600 760 C O 0.5 TS1a 0.001 INT1c 900 760 O 3 O( P) 0.5 O O C 3 O( P) 0.001 C H INT5 1200 760O INT1a H H C 0.5 INT1b 0.001 TS3 TS1b TS1c TS2 1500 760 O 0.5 O C 0.001 OH + CO 1800 760 H INT2 0.5 0.001 TS10 TS6 TS4 TS5 2100 760 0.5 H INT3 O 0.001 TS7 O 2400 760 C H TS8 0.5 O O 0.001 C +H 2700 O C 760 TS9 INT 4 0.5 O 0.001 3000 760 0.5 0.001 Scenario A (K) 300 H O+C(O)H 0.03 0.03 0.03 0.05 0.05 0.05 0.10 0.11 0.11 0.13 0.14 0.14 0.22 0.25 0.23 0.33 0.35 0.39 0.43 0.47 0.63 0.61 0.73 0.78 0.87 0.95 1.14 1.26 1.20 1.30 O+OCH 0.98 0.79 0.81 1.74 1.70 1.83 3.03 2.81 2.92 4.18 4.20 4.25 5.30 5.43 5.31 6.42 6.29 6.40 7.39 6.97 7.19 8.12 7.83 7.94 8.74 8.52 8.50 9.22 8.86 9.03 OH+CO 59.51 60.58 60.05 59.27 60.37 59.65 59.35 60.03 59.83 59.09 59.70 59.10 59.21 59.41 58.97 58.18 59.67 58.65 58.25 59.79 58.64 58.49 59.67 58.81 58.66 59.31 58.89 58.98 59.66 58.73 Scenario B H+CO2 39.48 38.61 39.12 38.94 37.89 38.48 37.53 37.06 37.15 36.61 35.97 36.52 35.28 34.91 35.50 35.09 33.71 34.57 33.96 32.78 33.54 32.79 31.79 32.48 31.75 31.24 31.48 30.56 30.30 30.94 O+C(O)H 0.02 0.03 0.03 0.03 0.04 0.05 0.07 0.07 0.04 0.11 0.10 0.10 0.15 0.18 0.16 0.24 0.24 0.23 0.36 0.38 0.31 0.49 0.52 0.48 0.67 0.71 0.65 0.90 0.92 0.87 O+OCH 0.65 0.49 0.51 1.20 1.14 1.16 2.10 1.95 1.93 2.87 2.90 2.96 3.58 3.70 3.59 4.21 4.43 4.28 4.77 5.02 4.81 5.27 5.49 5.45 5.77 5.80 5.80 5.94 6.14 6.15 O+HCO 1.23 1.42 1.40 1.89 2.02 2.00 3.05 3.07 3.34 4.82 5.34 5.11 7.70 8.14 7.84 11.25 11.70 11.50 15.95 16.06 15.79 20.46 21.04 20.74 25.43 25.99 25.72 30.77 30.54 30.43 OH+CO 72.15 72.07 70.63 71.53 71.30 69.60 70.37 70.20 68.14 68.33 67.78 66.43 65.23 65.01 63.85 61.60 61.34 60.42 56.81 56.56 56.05 52.14 51.76 51.30 47.18 46.93 46.42 42.28 42.33 41.75 H+CO2 25.95 26.00 27.44 25.35 25.50 27.19 24.40 24.71 26.54 23.87 23.88 25.40 23.34 22.96 24.55 22.70 22.28 23.58 22.11 21.98 23.04 21.65 21.19 22.03 20.95 20.57 21.41 20.11 20.08 20.80 How to resolve these uncertainties in weightings? Molecular Dynamics – future work 1. 2. 3. 4. 5. start with molecules in a randomly oriented system, with a given distribution of energies. let them fly, a bit, calculate energies and determine the vectors of the forces follow those vectors, a bit, return to 3, until one reaches a minimum HeH2+ LEPS Potential NH2OH a NH2 + OH NH2OH a NH3 + O Q. DeBoer, why should my tax dollars go to support your summer fun? A. Space Asset and Missile Defense? B. Basic research C. Long term security D. Build collaborative research relationships for LeTourneau students E. You too, can be a space scholar What should we take home? • Models can be used to explain and predict the chemistry of the O atom. • Want the models to be fast and accurate. • Are you a model student? Integration Intuition aided by experience and reason Reason, logic, systems of thought to reach assurance of knowledge Theories of Philosophy/theology that explain observations of the human condition Theories of natural science that explain the observed behavior of matter and biological systems Watch the PBS special on evolution and God EVOLUTION Features Ken Ham and Wheaton College If true, what then of Creation? Discuss after with LU faculty Steve Ball Karen Rispin Bill Hansen Fall? Glaske C101 Friday Oct. 5 7:00 pm Physics Biology Redemption? Bible A Socratic Forum – Sci Phi Event Acknowledgement Jim Dodd Jennifer Gardner US Air Force Office of Sponsored Programs USAFRL Summer Faculty Fellowship Program ASEE Welch Foundation