Gary DeBoer Associate Professor of Chemistry LeTourneau University Oct. 4, 2007 11:00 am, C101 Modeling summer fashions in chemistry: The far out, radical behavior of the.

Download Report

Transcript Gary DeBoer Associate Professor of Chemistry LeTourneau University Oct. 4, 2007 11:00 am, C101 Modeling summer fashions in chemistry: The far out, radical behavior of the.

Gary DeBoer
Associate Professor of Chemistry
LeTourneau University
Oct. 4, 2007
11:00 am, C101
Modeling summer fashions in chemistry:
The far out, radical behavior of the O atom
Dumb
Modeling surfaces,
Can tell us things, like about life on Mars
April 6, 1998 Viking
Energy = function (distance between atoms)
10.4
E = F(q1,q2)
Q. How do we model the shape of our
surface?
A. We use computational chemistry
software.
Q. Which?
A. Gaussian
Q. What does the software do?
A. It calculates the solution to the
Shrodinger Equation.
HY = EY
Types of Modeling
1. Energies and geometries
a. Molecular mechanics
b. Semi-empirical
c. Ab initio
i. Hartree-Fock (HF)
ii. Perturbation methods (MP2)
iii. Density Functional Theory (DFT)
iv. Compound methods, G3, CBS-QB3
2. Kinetics
RRKM using Multiwell
3. Ab intio/Molecular Dynamics
NWChem/Venus
The call of the O atom…
Q. Why in the world oxygen atom
chemistry?
A. My chemistry is not of this world.
O + NO a NO2*
Chang, General Chemistry
http://www.vs.afrl.af.mil/Gallery/
http://jan.ucc.nau.edu/doetqp/courses/env440/env440_2/lectures/lec32/lec32.htm
What we want to model?
O(3P)
TS1a
C
O
H
INT1c
O
O(3P)
O
O(3P)
O
-addition to O
C
C
INT1a
INT5
H
O
H
H
TS3
TS1b
O(3P) + HCO
TS1c
C
-abstraction of H
-addition to C
INT1b
TS2
O
O
OH + CO
C
INT2
H
TS5
O
INT3
TS8
O
C
Atoms and small molecules
are best addressed from an ab
initio perspective
TS10
TS6
TS4
H
TS7
H
O
C
O
O
+H
TS9
O
C
INT 4
B2
B3
A1
A2
D1
1.15946
2.75115
131.36645
126.41384
180.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
---------------------------! Initial Parameters !
! (Angstroms and Degrees) !
------------------------------------------!
Name
Value Derivative information (Atomic Units) !
-----------------------------------------------------------------------!
B1
1.11 calculate D2E/DX2 analytically
!
!
B2
1.1595 calculate D2E/DX2 analytically
!
!
B3
2.7512 calculate D2E/DX2 analytically
!
!
A1
131.3664 calculate D2E/DX2 analytically
!
!
A2
126.4138 calculate D2E/DX2 analytically
!
!
D1
180.0
calculate D2E/DX2 analytically
!
-----------------------------------------------------------------------Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07
Number of steps in this run= 2 maximum allowed number of steps= 2.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
--------------------------------------------------------------------Center Atomic Atomic
Coordinates (Angstroms)
Number Number
Type
X
Y
Z
--------------------------------------------------------------------1
6
0
0.000000 0.000000 0.000000
2
1
0
0.000000 0.000000 1.109986
3
8
0
0.870173 0.000000 -0.766255
4
8
0
-2.688818 0.000000 -0.582311
--------------------------------------------------------------------Distance matrix (angstroms):
1
2
3
4
1 C 0.000000
2 H 1.109986 0.000000
3 O 1.159460 2.068207 0.000000
4 O 2.751151 3.177045 3.563742 0.000000
Stoichiometry CHO2(2)
Framework group CS[SG(CHO2)]
Deg. of freedom 5
Full point group
CS
NOp 2
Largest Abelian subgroup
CS
NOp 2
Largest concise Abelian subgroup C1
NOp 1
Want to model the chemistry to explain
and predict experimental work.
Overview
1. Introduce the ab initio methods
2. Report on current ab initio results
3. Present future goals for molecular dynamics
4. Highlight and review
Yarnell Hill, a curvy stretch of Arizona highway.
HY  EY
 1 2 1 2
1
Z Z
Z 1
1
  1   2  ...  2n    ...   ...
2
2
r1 r2
rn r12
rmn
 2
Y0  Y0 (1)Y0 (2)...Y0 (n)
Y1  Y1 (1)Y1 (2)...Y1 (n)
...
Yk  Yk (1)Yk (2)...Yk (n)

Y  EY

Douglas Hartree Self Consistent Field method for finding Y, and then E. (1928)
1. Assumes that Y is a product of one electron, Y(n)’s, initially guessed, Y0 .
2. The individual Y0(n)’s are each optimized by letting each of the n electrons pass through a field
produced by an average influence of all the remaining electrons. After each Y0(n)’s is optimized
once, we produce Y1.
3. This process is repeated again and again until the resulting energy no longer changes and we
have converged upon the best Y, Yk.
4. In 1930, Fock and Slater, corrected the Hartree method for spin, thus creating the Hartree-Fock
Self Consistent Field, or HF-SCF, method.
5. Computational solutions are found using methods of linear algebra.
The HF-SCF method produces an error called electron correlation
Fixing the electron correlation problem
Approach 1. Moller-Plesset (MP) Theory, 1934, the pure, but slower route.
EMP 2  E
total
HF
E
The E2 term comes from a
new H’Y = E2Y in which
‘virtual orbitals’ are made
available for electrons to
enter.
The result is, less crowded,
happier electrons, at lower
energy.
Came to practical
development in 1975, by
Pople.
The MP2 and MP4 methods
require lots of integrals for
all the differing components
of Y a slow.
1938 or earlier
2
Milton Plesset
Edward Teller
Niels Bohr
Otto Frisch
Fritz Kalckar
Fixing the electron correlation problem
Approach 2, Density Functional Theory, DFT, the less than pure, somewhat semiempirical, but faster route. Fermi and Dirac, 1920’s to Parr and Yang, 1989
replace
Y0  Y0 (1)Y0 (2)...Y0 (n)
with  ( x, y, z )
so F ( 0 )  E0 as was HY0  EY0
Decreases all the variables of Y to only three: x,y, and z.
E0  
 Z
nuclei A
 (r1 )
r1A
*external
potential
1 2n
1  (r )  (r2 )
dr    Yi (1) 12 Yi (1)   1
dr1dr2  EC  
2 i 1
2
r12
+
k.e. of
electrons
+
electrostatic
repulsion
Exc is determined empirically
+
exchange
correlation
functional
B3LYP functional
Becke 3 Lee-Yang-Parr
EBLYP  P2 E
HF
X
 P1 (P4 E
Slater
X
 P3E
)  P6  P5E
Becke
X
LYP
C
These parameters are adjustable and Song reports having
adjusted them to fit the DFT/B3LYP/6-31G(d) results to
higher level calculations for his OH + CO work.
These optimized parameters for the OH + CO reaction should also be
valid for our O + HCO reaction.
Accurate and fast DFT/B3LYP/6-31G(d) calculation should benefit our
MD/QM calculations using Venus/NWChem.
Y‘s are linear combinations of atomic orbitals LCAO’s,
each AO being modeled with basis sets
STO-3G
1 Atomic Orbital = 1 Slater Type Orbital = 3 Gaussians.
1 contracted function = 3 primitives Gaussians.
An example of a minimal basis set
1 atomic orbital = 1 contracted function (STO-3G)
Eg. Carbon, element 6, would be modeled with
1s, 2s, and 3 2p’s atomic orbitals,
5 contracted STO-3G’s
15 primitive Gaussians.
6-31G(d) or 6-31G*
A split valence basis set with polarization.
The core oribitals are described with 1 contracted function composed of 6
primitive Gaussian functions
The valence orbitals are split into inner and outer shells.
The inner valence shell
1 contracted function = 3 primitive Gaussian functions.
The outer valence shell
1 contracted function = 1 primitive Gaussian function.
Eg. Carbon, element 6,
1s, 2s, 2s’, 3 2p, and 3 2p’ atomic orbitals = 9 contracted functions,
6 +(3 + 1) + 3*(3 + 1)=22 primitive Gaussians.
The (d) or the * denotes that polarization has been added. This adds 6 d
orbitals (1 primitive gaussian) to the previous 9 contracted basis
functions for a total of 15 contracted basis functions or 28 primitives .
C, 2 O’s, H, would give 3*15 + 2 (1s +1s’), hydrogen doesn’t get a d) = 47
contracted functions, or 88 primitive Gaussians.
Fixing other problems like polarization, diffusion, and
so on through compound methods
G3
CBS-QB3 complete basis set
1. HF/6-31G(d) geometry
optimization and frequency
1. DFT/B3LYP/CBSB7 geometry
optimization and frequency
2. MP2(full)/6-31G(d) geometry
optimization
2. CCISD(T)/6-31+G(d) energy
3. QCISD(T,E4T)
6-31G(d)energy
4. MP4/6-31G+(d)
5. MP4/6-31G(2df,p)
3. MP4SDQ/CBSB4 energy
4. MP2/CBSB3 energy
5. CCSD(T) energy
6. Empirical spin correction
6. MP2(full)/GTlarge
7. Empirical spin correction
Both methods estimate polarization, diffusion, and other such things by
comparing outcomes from the different steps. Small basis set calculations can
then predict the larger basis set results.
Table 1 Calculated energies in kJ/mole for species in the O + CHO system on a doublet surface.
Method a
(UHF 6-31G(d))
DFT/B3LYP/CBSB7
ZPE
37.75
Relative
Relative Energy
Energy + ZPE
0.00
37.75
ZPE
33.93
Relative
Relative Energy
Energy
+ ZPE
0.00
33.93
39.29
38.35
43.24
41.82
38.5
59.59
-29.19
10.1
-17.35
21.00
-240.7 -197.46
-239
-197.18
-232.51 -194.01
-164.29 -104.7
39.41
37.49
39.31
38.30
35.44
51.38
-20.27
-8.01
-347.66
-344.11
-338.12
-428.78
INT 2b HC(O)O Cs
58.43
-258.67 -200.24
H --- CO2
33.79
H + CO2
INT 3 trans HOCO
INT 4 cis HOCO
INT 5 trans HCOO
Species
O + CHO
INT 1a O -- CHO *
INT 1b O -- HCO
INT 1c O -- OCH
OH -- CO
OH -- OC
OH + CO
INT 2a HC(O)O C2v
Transition States
TS1a
TS1b
TS1c
TS2
TS3*
TS4
TS5
TS6
TS7
TS8
TS9
TS10
19.14
29.48
-308.35
-305.81
-302.68
-377.40
-231.01
31.23
33.47
60.11
59.89
38.35
-264.69 -231.22
-250.84 -190.73
-251.79 -191.9
-1.74
36.61
30.77
-450.03 -418.80
-449.70 -418.93
55.12
54.14
44.23
-477.22 -422.10
-471.37 -417.23
61.36 105.59
41.49
311.32
-264.8
352.81
39.25
40.36
87.10
68.34
126.35
108.70
DFT/SRP-B3LYP/6-31(d)
ZPE
35.74
-34.55
6.86
-139.17 -101.84
-165.88 -117.07
-215.43 -160.3
9.38
44.13
-83.4
-47.6
-140.57 -93.99
37.96
33.06
38.55
50.00
34.15
33.66
39.20
-322.5
-405.94
-345.53
-436.14
-287.33
-369.16
-338.21
-284.54
-372.88
-306.98
-386.14
-253.18
-335.50
-299.01
ZPE
41.78
40.46
36.62
80.19
-307.30
-302.22
-291.12
-356.27
-265.52
-261.76
-254.50
-276.08
41.2
37.38
36.97
40.56
41.12
35.07
60.96
54.15
-384.59 -330.44
52.81
32.99
-386.89 -353.90
30.73
31.90
-385.94 -354.04
57.37
56.70
-410.60 -353.23
-407.78 -351.08
30.34
55.33
54.79
41.68
151.17
41.42
41.41
37.33
48.81
55.13
34.75
35.8
46.58
Relative
Relative Energy
Energy + ZPE
0.00
35.74
MP2 6-31G(d) full
202.3
192.85
243.72
39.73
-233.51 -193.78
44.27
52.24
35.08
35.00
42.71
-299.12
-370.65
-194.00
-280.93
-278.92
-254.85
-318.41
-158.92
-245.93
-236.21
44.48
42.79
40.46
36.46
41.93
39.56
111.93
43.12
51.03
36.33
35.24
42.48
Relative
Energy
0.00
-13.12*
-4.89
-3.18
-352.66
-346.05
-338.84
-409.01
Relative
Energy
+ ZPE
28.07
32.49
33.79
-312.10
-304.93
-303.77
-348.05
CBSQB3
G3
Ave.
CBS
and G3
Relative Energy
0.00
0.00
0.00
-35.65* -35.66
-7.99
-13.55 -10.77
-12.99 -12.78 -12.89
-370.78 -372.3 -371.54
-368.5 -359.57 -364.04
-365.83 -366.88 -366.36
-415.16 -406.57 -410.87
-395.76 -342.95
-399.88 -399.88
-510.19 -479.46 -471.28 -473.94 -472.61
-510.05 -479.71 -471.34 -469.35 -470.35
-464.70 -409.37 -472.94 -468.47 -470.71
-460.14 -405.35 -464.48 -460.65 -462.57
77.91
77.91
173.20
158.69
252.32
99.86
34.11
-292.38
-385.29
-326.54
-419.96
-225.66
-333.21
-305.55
217.68
201.48
292.78
136.32
76.04
-252.82
-273.36
-283.42
-368.93
-189.33
-297.97
-263.07
98.84
65.28
163.87
-332.23
-332.23
-411.76
-368.75
-438.62
-272.59
-362.08
-351.95
* see text for details
These numbers allow us to build our potential energy surface
75.68
69.92
34.82
-328.37
-408.49
-362.19
-434.71
-271.4
-366.68
-355.11
98.84
70.48
163.87
69.92
34.82
-330.30
-410.13
-365.47
-436.67
-272.00
-364.38
-353.53
O(3P)
TS1a
C
O
H
INT1c
O
O(3P)
O
O(3P)
O
C
C
INT1a
INT5
H
O
H
H
TS3
TS1b
TS1c
C
INT1b
TS2
O
O
trans-HCOO
INT2
200
100
TS1c
TS2
0
kJ/mole
INT1
H
O
INT3
TS1b
TS3
TS8
OH + CO
-100
O
C
TS8
TS4
TS6
-400
-500
INT2
INT3
TS10
TS5
TS7
INT4
-600
Reaction Coordinate
TS7
H
O
O
+H
TS9
-300
H
O
C
-200
TS10
TS6
TS4
TS5
TS1a
OH + CO
C
O
TS9
H + CO2
C
INT 4
Some illustrative examples
TS6
IRC
TS8
IRC
TS1a
IRC
k = A exp(-Ea/RT)
Spencer Falls
Greensville,
Ontario
Niagara Falls, NY
Smart
E = mc2
PV=nRT
Brooke Shields after having taken general
chemistry at LeTourneau University
Smart Modeling of Kinetics
RRK
Rice, Ramsperger, and Kassel, 1927
RRKM = RRK + modification to correct for zero point
energy (ZPE)
Sum of states for the
transition species

G( E )
k (E) 
N ( E )
Density of states of
reactants
Transition State
Products
Reactants
O(3P)
TS1a
C
O
H
INT1c
O
O(3P)
O
O
3
O( P)
C
C
INT1a
INT5
H
O
H
H
TS3
TS1b
TS1c
C
INT1b
TS2
O
O
OH + CO
C
INT2
H
O
INT3
TS8
TS10
TS6
TS4
TS5
O
C
H
TS7
H
O
C
O
O
+H
TS9
O
C
INT 4
Table 4: Relative Branchng Ratios for Product Channels under Scenario A
conditions
O+C(O)H
(K)
(Torr)
300
760
0.53
O( P)
0.001
600
760
C
O
TS1a
0.5
H
0.001 INT1c
O
3
900
760
O(0.01
P)
O
0.5
0.02
O
C
3
O( P)
C
0.001
0.01
O
INT5 H
INT1a
H
1200
760
0.01
H
C
0.5
0.03
TS3
TS1b
TS1c
TS2 0.001 INT1b
0.01
1500
760
0.02
O
0.5
0.07
O
C
OH + CO 0.001
0.03
1800
760
0.06
H
INT2
0.5
0.11
0.001
0.10
TS10
TS6
TS4
TS5
2100
760
0.15
0.5
0.21
H
0.001
0.18
INT3 O
TS7
2400
760
0.25
O
C
H
TS8
0.5
0.37
O
O
0.001
0.32
2700
760
0.37
O
C
C
+H
TS9
0.5 INT 4 0.53
O
0.001
0.55
3000
760
0.65
0.5
0.75
0.001
0.66
O+OCH
0.01
Activating Complex in Bold
OH+CO H+CO2 O+C(O)H O+OCH
57.62
42.38
0.06
1.96
59.49
40.51
0.05
1.58
58.75
41.25
0.05
1.62
58.27
41.73
0.10
3.48
59.84
40.16
0.09
3.40
58.79
41.21
0.09
3.65
59.16
40.83
0.18
6.05
60.43
39.55
0.19
5.62
59.41
40.58
0.21
5.84
59.70
40.29
0.24
8.36
60.95
39.02
0.25
8.40
59.93
40.06
0.26
8.49
60.29
39.69
0.41
10.60
61.46
38.47
0.43
10.86
60.52
39.45
0.42
10.62
60.57
39.37
0.59
12.83
62.03
37.86
0.58
12.57
60.86
39.04
0.67
12.79
61.15
38.73
0.70
14.77
62.82
36.97
0.73
13.93
61.42
38.40
1.08
14.38
61.55
38.20
0.96
16.24
63.32
36.31
1.08
15.65
61.76
37.92
1.23
15.88
61.94
37.69
1.36
17.47
63.53
35.94
1.36
17.03
62.46
36.99
1.73
16.99
62.48
36.87
1.86
18.43
63.77
35.47
1.64
17.70
62.65
36.69
1.94
18.06
OH+CO
61.40
61.67
61.34
60.27
60.89
60.51
59.54
59.63
60.24
58.47
58.44
58.27
58.13
57.36
57.42
55.78
57.30
56.44
55.35
56.75
55.86
55.43
56.01
55.86
55.37
55.08
55.31
55.47
55.54
54.81
H+CO2
36.58
36.70
36.99
36.15
35.62
35.75
34.23
34.56
33.71
32.93
32.91
32.98
30.86
31.35
31.54
30.80
29.55
30.10
29.18
28.59
28.68
27.37
27.26
27.03
25.80
26.53
25.97
24.24
25.12
25.19
Table 5: Relative Branchng Ratios for Product Channels under Scenario B
conditions
O+C(O)H O+OCH O+HCO OH+CO
(K)
(Torr)
300
760
0.01
59.28
0.5
0.01
0.02
59.26
0.001
55.30
600
760
0.09
59.54
O(3P)
0.5
0.01
0.05
59.34
0.001
0.01
0.07
54.12
C
O
TS1a
900
760
0.01
0.24 H 60.26
INT1c
0.5
0.04
0.27
59.94
O
3
0.001
0.01
0.33
54.87
O( P)
O
O
C
1200
760
0.02
0.76
60.05
O(3P)
C
0.5
0.04
0.63
60.21
O
H
INT5
INT1a
H
0.001
0.01
55.91
H 0.77
C
1500
760
0.05
1.50
59.59
INT1b
TS3
TS1b
TS1c
TS2
0.5
0.10
1.67
59.81
O
0.001
0.03
1.57
56.42
1800 O C760
0.11 OH + CO
3.02
58.45
0.5
0.18
3.18
59.00
H
INT2
0.001
0.07
3.18
55.84
TS10
2100
760
0.18
5.35
56.35
TS6
TS4
TS5
0.5
0.26
5.42
57.07
0.001
0.10
5.45
54.38
H
INT3 O
2400
760
0.31 TS7 0.01
7.85
54.36
O
C
H8.11
0.42
54.90
TS8 0.5
O
0.001
0.18
7.96
52.87
O
2700
760
0.50
0.01 O C10.85
51.61
C
+H
TS9 0.52
0.5
0.01 INT 10.83
52.36
4
O
0.001
0.39
10.79
50.66
3000
760
0.67
0.01
14.09
48.91
0.5
0.79
0.02
13.70
49.73
0.001
0.65
0.02
14.04
47.90
Activating Complex in Bold
H+CO2 O+C(O)H O+OCH O+HCO
40.71
0.06
1.96
3.61
40.71
0.07
1.46
4.19
44.70
0.08
1.52
4.15
40.37
0.08
3.60
5.30
40.60
0.11
3.42
5.72
45.80
0.14
3.49
5.67
39.49
0.21
6.31
7.96
39.75
0.18
5.85
8.00
44.79
0.12
5.80
8.63
39.17
0.30
8.62
11.10
39.12
0.26
8.69
12.40
43.31
0.28
8.88
11.84
38.86
0.41
10.73
15.51
38.42
0.43
11.11
16.65
41.98
0.46
10.78
16.03
38.42
0.60
12.63
20.01
37.64
0.55
13.30
20.98
40.91
0.63
12.83
20.27
38.12
0.91
14.31
25.22
37.25
0.88
15.07
25.56
40.07
0.83
14.44
24.73
37.47
1.15
15.80
29.13
36.57
1.14
16.47
30.15
39.00
1.27
16.35
29.37
37.03
1.52
17.29
33.61
36.28
1.62
17.39
34.66
38.16
1.55
17.40
33.14
36.32
2.03
17.80
38.00
35.76
1.96
18.40
37.91
37.39
1.96
18.43
36.89
OH+CO
57.23
57.00
56.63
55.33
54.85
54.93
51.80
51.60
50.62
47.53
46.12
46.11
42.18
41.34
41.05
37.07
35.97
36.45
31.34
29.81
30.96
26.45
25.23
25.92
21.76
20.89
21.84
18.16
17.25
17.72
H+CO2
37.14
37.28
37.62
35.69
35.90
35.77
33.72
34.37
34.83
32.45
32.53
32.89
31.17
30.47
31.68
29.69
29.20
29.82
28.22
28.68
29.04
27.47
27.01
27.09
25.82
25.44
26.07
24.01
24.48
25.00
O+HCO
0.06
0.04
0.04
0.28
0.29
0.26
0.95
0.95
1.07
2.59
2.98
2.73
6.08
6.11
5.92
10.73
10.94
11.04
17.27
17.19
17.20
24.39
24.86
24.89
31.82
32.47
33.24
40.22
40.00
40.37
OH+CO
99.94
99.96
99.96
99.72
99.71
99.74
99.05
99.05
98.93
97.41
97.02
97.27
93.92
93.89
94.08
89.27
89.06
88.96
82.73
82.81
82.80
75.61
75.14
75.11
68.18
67.53
66.76
59.78
60.00
59.63
Table 6: Average Branching Ratios Under Scenario A and Scenario B
conditions
(Torr)
760
0.5
0.001
O(3P)
600
760
C
O 0.5
TS1a
0.001
INT1c
900
760
O
3
O(
P)
0.5
O
O
C
3
O( P)
0.001
C
H
INT5
1200
760O
INT1a
H
H
C
0.5
INT1b
0.001
TS3
TS1b
TS1c
TS2
1500
760
O
0.5
O
C
0.001
OH + CO
1800
760
H
INT2
0.5
0.001
TS10
TS6
TS4
TS5
2100
760
0.5
H
INT3 O
0.001
TS7
O
2400
760
C
H
TS8
0.5
O
O
0.001
C
+H
2700 O C 760
TS9
INT 4 0.5
O
0.001
3000
760
0.5
0.001
Scenario A
(K)
300
H
O+C(O)H
0.03
0.03
0.03
0.05
0.05
0.05
0.10
0.11
0.11
0.13
0.14
0.14
0.22
0.25
0.23
0.33
0.35
0.39
0.43
0.47
0.63
0.61
0.73
0.78
0.87
0.95
1.14
1.26
1.20
1.30
O+OCH
0.98
0.79
0.81
1.74
1.70
1.83
3.03
2.81
2.92
4.18
4.20
4.25
5.30
5.43
5.31
6.42
6.29
6.40
7.39
6.97
7.19
8.12
7.83
7.94
8.74
8.52
8.50
9.22
8.86
9.03
OH+CO
59.51
60.58
60.05
59.27
60.37
59.65
59.35
60.03
59.83
59.09
59.70
59.10
59.21
59.41
58.97
58.18
59.67
58.65
58.25
59.79
58.64
58.49
59.67
58.81
58.66
59.31
58.89
58.98
59.66
58.73
Scenario B
H+CO2
39.48
38.61
39.12
38.94
37.89
38.48
37.53
37.06
37.15
36.61
35.97
36.52
35.28
34.91
35.50
35.09
33.71
34.57
33.96
32.78
33.54
32.79
31.79
32.48
31.75
31.24
31.48
30.56
30.30
30.94
O+C(O)H
0.02
0.03
0.03
0.03
0.04
0.05
0.07
0.07
0.04
0.11
0.10
0.10
0.15
0.18
0.16
0.24
0.24
0.23
0.36
0.38
0.31
0.49
0.52
0.48
0.67
0.71
0.65
0.90
0.92
0.87
O+OCH
0.65
0.49
0.51
1.20
1.14
1.16
2.10
1.95
1.93
2.87
2.90
2.96
3.58
3.70
3.59
4.21
4.43
4.28
4.77
5.02
4.81
5.27
5.49
5.45
5.77
5.80
5.80
5.94
6.14
6.15
O+HCO
1.23
1.42
1.40
1.89
2.02
2.00
3.05
3.07
3.34
4.82
5.34
5.11
7.70
8.14
7.84
11.25
11.70
11.50
15.95
16.06
15.79
20.46
21.04
20.74
25.43
25.99
25.72
30.77
30.54
30.43
OH+CO
72.15
72.07
70.63
71.53
71.30
69.60
70.37
70.20
68.14
68.33
67.78
66.43
65.23
65.01
63.85
61.60
61.34
60.42
56.81
56.56
56.05
52.14
51.76
51.30
47.18
46.93
46.42
42.28
42.33
41.75
H+CO2
25.95
26.00
27.44
25.35
25.50
27.19
24.40
24.71
26.54
23.87
23.88
25.40
23.34
22.96
24.55
22.70
22.28
23.58
22.11
21.98
23.04
21.65
21.19
22.03
20.95
20.57
21.41
20.11
20.08
20.80
How to resolve these uncertainties in weightings?
Molecular Dynamics – future work
1.
2.
3.
4.
5.
start with molecules in a randomly oriented system, with a given
distribution of energies.
let them fly, a bit,
calculate energies and determine the vectors of the forces
follow those vectors, a bit,
return to 3, until one reaches a minimum
HeH2+ LEPS Potential
NH2OH a NH2 + OH
NH2OH a NH3 + O
Q. DeBoer, why should my tax dollars go to
support your summer fun?
A. Space Asset and Missile Defense?
B. Basic research
C. Long term security
D. Build collaborative research relationships
for LeTourneau students
E. You too, can be a space scholar
What should we take home?
• Models can be used to explain and predict
the chemistry of the O atom.
• Want the models to be fast and accurate.
• Are you a model student?
Integration
Intuition aided by
experience and reason
Reason, logic,
systems of thought
to reach assurance
of knowledge
Theories of
Philosophy/theology
that explain
observations of the
human condition
Theories of
natural science that
explain the observed
behavior of matter and
biological
systems
Watch
the PBS special on evolution and God
EVOLUTION
Features Ken Ham and Wheaton College
If true, what then of
Creation?
Discuss after with LU faculty
Steve Ball
Karen Rispin Bill Hansen
Fall?
Glaske C101
Friday Oct. 5
7:00 pm
Physics
Biology
Redemption?
Bible
A Socratic Forum – Sci Phi Event
Acknowledgement
Jim Dodd
Jennifer Gardner
US Air Force Office of Sponsored Programs
USAFRL Summer Faculty Fellowship Program
ASEE
Welch Foundation