LCLS Accelerator 6 MeV z  0.83 mm   0.05 % rf gun 250 MeV z  0.19 mm   1.6 % 135 MeV z  0.83 mm 

Download Report

Transcript LCLS Accelerator 6 MeV z  0.83 mm   0.05 % rf gun 250 MeV z  0.19 mm   1.6 % 135 MeV z  0.83 mm 

LCLS Accelerator
6 MeV
z  0.83 mm
  0.05 %
rf
gun
250 MeV
z  0.19 mm
  1.6 %
135 MeV
z  0.83 mm
  0.10 %
4.30 GeV
z  0.022 mm
  0.71 %
13.6 GeV
z  0.022 mm
  0.01 %
Linac-X
L =0.6 m
rf= -160
Linac-0
L =6 m
Linac-1
L 9 m
rf  -25°
...existing
linac
21-1
b,c,d
DL1
L 12 m
R56 0
Linac-2
L 330 m
rf  -41°
Linac-3
L 550 m
rf  0°
21-3b
24-6d
25-1a
30-8c
X
BC1
L 6 m
R56 -39 mm
Commission in Jan. 2007
BC2
L 22 m
R56 -25 mm
Commission in Jan. 2008
SLAC linac tunnel
undulator
L =130 m
DL2
L =275 m
R56  0
research yard
LCLS Installation and Commissioning Time-Line
Drive-Laser
Commissioning
undulator
hall ready
Drive-Laser
Install
LTU/und.
Install
linac/BC2
Install
First FEL
Light
First Spont.
Light
M J J A SOND J FMAM J J A SOND J FMAM J J
2006
2007
2008
May
2006
Gun/Inj./BC1 Gun/Inj./BC1
Install
Commissioning
linac/BC2
Commissioning
FEL Comm.
LTU/undulator
Commissioning
RF Photo-Cathode Gun
Q = 1 nC
f = 120 Hz
G = 120 MV/m
gex,y = 1 mm
Dt = 10 ps
I = 100 A
Slice emittance >1.8 mm will not saturate
eN = 1.2 mm
P = P0
eN = 2.0 mm
P  P0/100
courtesy S. Reiche
electron beam must meet brightness requirements
Complete & Detailed Design (cathode to dump)
cathode L2
BC2
L3
LTU
undulator
Full MAD deck at: http://www-ssrl.slac.stanford.edu/lcls/linac/optics/lcls.txt
Bunch Compression Progression
after L2
energy
profile
phase
space
time
profile
after DL1
z = 830 mm
after L1
z = 190 mm
after BC2
z = 830 mm
after X-RF
z = 23 mm
after L3
z = 830 mm
after BC1
z = 23 mm
at und.
z = 190 mm
z = 23 mm
Location of Main Linac Diagnostics
5+ energy spread meas. stations (optimized with small b)
5+ emittance meas. stations designed into optics (Dyx,y)
BPMs at or near most quadrupoles and in each bend syst.
RF deflectors for slice e and E measurements (L0 & L3)
rf
gun
T-cav.
gex,y
...existing linac
L1
E
E
gex,y
gex,y
T-cav.
L2
X
E
E
gex,y
L3
E
E
gex,y
E
E
E E
Slice-Emittance Measurement Simulation
RF-deflector at 1 MV
slice OTR 10 times
135 MeV
quad scanned
y  bunch length
Slice-Emittance Measurement Simulation
(slice-y-emittance also simulated in BC1-center)
Injector (135 MeV) with
S-band RF-deflector at 1 MV
(same SLAC slice-e code used at BNL/SDL)
= meas. sim.
= calc.
= y distribution
= actual
DL1 slice-emit on WS02
slice-5
Gun/Injector Diagnostics
RF Gun
E
NT
VA
C
UU
M
TR
EA
TM
PU
C
BER
MPS
HAM
YAG screen
YAG screen
LO
A S NG
SE B EL
M
BL LO
Y WS
SP
SE O OL
AL S
FR
O
MV
AL
H
VE
PO
R
OLD CU
PI
E R NE
CA
TH
O
DE
UH
GA V A
TE LL
V M
AL ET
VE AL
S
YAG screen
YAG
screen
gun
spectrometer
trajectory (BPMs)
emittance (+ slice)
energy spread (+ slice)
bunch length (+ dist.)
charge (+ dark current)
YAG screen
Transverse RF deflector
OTR screen & wire
OTR screen & wire
OTR screen
& wire
OTR screen
& wire
main SLAC Linac
injector spectrometer
YAG screen
YAG & OTR
Injector Through BC1 Commissioning
no laser-heater
until 2007
RF
deflector
gex,y
and slice
E
E
Injector Through BC1 Commissioning (2)
relative
bunch length
monitors
BC1
X-band
RF
E
E
slice gey
gex,y
stopper
Linac-To-Undulator (LTU)
vertical bends
energy centroid & spread meas. (OTR)
(310-5 & 10-4) + collimation
4 e-wires,
6 collimators,
1 OTR








vertical bend 4.7 mr
horizontal jog 1.25 m
energy diagnostics
emit. diagnostics
bunch length diag.
collimators
CSR cancellation
branch points for
future undulators
 spontaneous
undulator possible
Enhanced CSR in BC1
Emittance of RF Photo-Cathode Gun
Micro-Bunching Instability
Bunch Length Monitors
CSR in BC1 and BC2
Impedance in BC2 Vacuum Chambers
Space-Charge Effects in BC1 Region
Chromatic Correction for Highly Chirped Beams
Improved LTU Lattice
Undulator Wakefields
FEL Commissioning and Tuning
Start-to-end Simulations and Integration with LCLS Controls
ESASE/Replicator
Optical Klystron Gain Enhancement
Seeded and Self-Seeded FEL for Next Phase of LCLS
Development of an X-band Transverse RF Deflector
Multi-bunch LCLS and Regenerative Amplifier FEL
Harmonic Afterburner