n n: d2 and A1 Recent Results and Outlook Diana Parno CENPA, University of Washington 2013 Users’ Group Meeting, Jefferson Lab.
Download ReportTranscript n n: d2 and A1 Recent Results and Outlook Diana Parno CENPA, University of Washington 2013 Users’ Group Meeting, Jefferson Lab.
n n: d2 and A1 Recent Results and Outlook Diana Parno CENPA, University of Washington 2013 Users’ Group Meeting, Jefferson Lab Outline • Deep inelastic scattering and structure functions • d2 and A1 for the neutron • E06-014 in Hall A at 6 GeV • Outlook at 12 GeV Diana Parno - May 29, 2013 2 Deep Inelastic Scattering k’ k Incident electron Scattered electron q Incident nucleon p Virtual photon • Start with a polarized electron and a polarized nucleon • They exchange a virtual photon • Virtual photon-nucleon vertex contains nucleon structure information • Inclusive measurement: only detect scattered electrons Diana Parno - May 29, 2013 3 Nucleon Structure Functions • Scattering from a point particle is straightforward: k’ k θ • To describe scattering from a complex structure – like a nucleon – you need structure functions: Diana Parno - May 29, 2013 4 Polarized Structure Functions • Now add relative spin orientations to the picture ù d 2s ¯Ý d 2s Ý 4a 2 E ' é E + E 'cosq Q2 2 2 = 2 ê g1 ( x,Q ) g x,Q )ú 2 2( dWdE ' dWdE ' Q E ë Mn Mn û • F1(x, Q2) and g1(x, Q2) have simple meanings in the quark-parton model: 1 F1 (x,Q ) = åei2 éëq-i (x,Q 2 ) + q¯i (x,Q 2 )ùû 2 i 2 1 g1 (x,Q ) = å ei2 éëq-i (x,Q 2 ) - q¯i (x,Q 2 )ùû 2 i 2 Diana Parno - May 29, 2013 5 d2 • From g1 and g2, we form the quantity d2 for the nucleon: d2 (Q ) = 2 ò x ( 2g (x,Q ) + 3g (x,Q ))dx 1 0 2 2 1 2 2 Bag Model We need precise data at large x QCD Sum Lattice Chiral Data Rules QCD Soliton • Clean probe of twist-3 physics (quark-gluon correlations) • 2σ discrepancy between lattice prediction and measurement of neutron d2 d2 Proton Neutron Diana Parno - May 29, 2013 Predictions and Data 6 A1 • Picture the polarizations at the hadron vertex: Photon spin Nucleon spin Photon spin Nucleon spin q p q Opposite helicities: s1/ 2 Same helicities: s3/2 s1/ 2 - s 3 / 2 A1( x,Q ) º = s1/ 2 + s 3 / 2 2 p g1 (x,Q 2 ) - Q2 n 2 g2 (x,Q 2 ) F1 (x,Q ) 2 » g1 ( x,Q 2 ) F1 ( x,Q 2 ) • Flavor decomposition of spin structure from A1n and A1p combined Diana Parno - May 29, 2013 7 More Neutron DIS Data Needed • ... at Q2 ≈ 5 GeV2 and large x. • ... at large x. pQCD predicts lim A1 (x,Q ) =1 n 2 x®1 d2 A1n n x Q2 (GeV2) Leader, Sidorov and Stamenov, PRD 75: 074027 (2007) Avakian et al, PRL 99: 082001 (2007) Diana Parno - May 29, 2013 8 Outline • Deep inelastic scattering and structure functions • d2 and A1 for the neutron • E06-014 in Hall A at 6 GeV • Outlook at 12 GeV Diana Parno - May 29, 2013 9 E06-014 in Hall A • • • • Feb-Mar 2009 Ee = 4.7 and 5.9 GeV Inclusive asymmetries Inclusive cross Compton Polarimeter sections BigBite spectrometer Beam direction Left high-resolution Polarized electron spectrometer beam Diana Parno - May 29, 2013 Polarized 3He target 10 He Target ~90% • • Polarized 3He Target ~2% ~8% • 87% of the time, the neutron carries the 3He nuclear spin • Polarized 3He target ≈ polarized neutron target • Hybrid spin-exchange optical pumping ~10 atm 3He cell with trace of K, amounts 1. Polarize RbRb via optical pumping Polarization achieved 2. Rb-Koptical interactions polarize K pumping through and 2-step spin exchange 3. K-3He interactions polarize 3He » K → Rb » Rb → 3He ● April 14, 2013 25 Ameya Kolarkar, PhD thesis, 2008 Diana Parno - May 29, 2013 11 E06-014 Kinematics DIS region Resonance region Diana Parno - May 29, 2013 12 Preliminary E06-014 Results • What you will see accounted for: – Beam polarization – Target polarization – N2 dilution in target cell – Dilution from e+/e- pairs produced in π0 decay – Basic nuclear corrections (effective polarization model) • What you won’t see accounted for: – Radiative corrections (nearly complete) – Asymmetries from e+/e- pairs – Some systematics (cut selection, kinematics) – More sophisticated nuclear corrections Deconvolution method in progress – Melnitchouk et al. Diana Parno - May 29, 2013 13 x2g1n (d2n integrand) • Lacks radiative / pair-production corrections • Systematic error bars will grow • Preliminary nuclear-correction method Diana Parno - May 29, 2013 14 x2g2n (d2n integrand) • Lacks radiative / pair-production corrections • Systematic error bars will grow • Preliminary nuclear-correction method Diana Parno - May 29, 2013 15 A1He-3 DIS Resonance E06014 (Ee = 5.89 GeV) E06014 (Ee = 4.74 GeV) E142 • Lacks radiative / pair-production corrections • Systematic error bars will grow • No nuclear correction yet E99-117 E01-012 (resonance) Diana Parno - May 29, 2013 16 Outline • Deep inelastic scattering and structure functions • d2 and A1 for the neutron • E06-014 in Hall A at 6 GeV • Outlook at 12 GeV Diana Parno - May 29, 2013 17 E12-06-121: d2n at 12 GeV • Ee=11 GeV, upgraded 3He target • SHMS: large x range at nearly constant Q2 • HMS: fill in gaps at low x SHMS HMS E06-014 kinematics Diana Parno - May 29, 2013 Approved with A- rating 29 days in Hall C • Measure d2n at 4 constant Q2 values • Error at each point will be comparable to E06-014 Spokespeople: T. Averett W. Korsch Z.-E. Meziani B. Sawatzky 18 Kinematic coverage of A n1 measurement using HMS and SHMS with a 11 GeV e higher (lower) Q2 settings correspond to a scattering angle of 30◦ (12.5◦ ). ch angle setting, the solid (open) markers are for the lower (higher) momentum Kinematic points with overlapping x and Q2 bins are shifted horizontally for he error bars are proportional to the expected statistical uncertainties on A n1 . 3 y to match ∆ A n1 (stat.) at the two different Q2 values. At highest x settings e ), the smaller angle acceptance of the SHMS is compensated by its large ytar g e, hence error bars from the SHMS is about the same as those from the HMS. uncertainties combining the two spectrometers and different kinematics are ection 4. E12-06-110: A1n at 12 GeV • E =11 GeV, upgraded He target • Simultaneous HMS, SHMS measurements improve statistics 30° Approved with A rating 36 days in Hall C • Precise DIS A1n measurements from 0.25 ≤ x ≤ 0.77 12.5° Push to high x Spokespeople: G. Cates J.-P. Chen Z.-E. Meziani X. Zheng Explore Q2 dependence 16 Diana Parno - May 29, 2013 19 E12-06-122: A1n at 12 GeV • Ee=6.6, 8.8 GeV; upgraded target • BigBite: Primary measurement • Left HRS: Cross-check (lower statistics) 3He Approved with A- rating 23 days in Hall A • Third set of Q2 values for interpolation • Test of open-geometry measurement technique Spokespeople: T. Averett G. Cates N. Liyanage G. Rosner B. Wojtsekhowski X. Zheng Diana Parno - May 29, 2013 20 Conclusions • DIS measurements of d2n and A1n at large x will – test Lattice QCD and pQCD – probe higher-twist effects – explore nucleon spin structure • E06-014 data will address these questions – Stay tuned for final results • The 12-GeV program will improve the picture even further – Push to higher x – Explore Q2 evolution Diana Parno - May 29, 2013 21 The E06-014 Collaboration (Hall A) K. Allada W. Armstrong T. Averett F. Benmokhtar W. Bertozzi A. Camsonne M. Canan G. D. Cates C. Chen J.-P. Chen S. Choi E. Chudakov F. Cusanno M. M. Dalton W. Deconinck C. W. de Jager X. Deng A. Deur C. Dutta L. El Fassi D. Flay G. B. Franklin M. Friend H. Gao F. Garibaldi S. Gilad R. Gilman O. Glamazdin S. Golge J. Gomez L. Guo O. Hansen D. W. Higinbotham T. Holmstrom J. Huang C. Hyde H. F. Ibrahim X. Jiang G. Jin J. Katich A. Kelleher A. Kolarkar Co-spokesperson W. Korsch G. Kumbartzki J. J. LeRose R. Lindgren N. Liyanage E. Long A. Lukhanin V. Mamyan D. McNulty Z.-E. Meziani R. Michaels M. Mihovilovič B. Moffit N. Muangma S. Nanda A. Narayan V. Nelyubin B. Norum Nuruzzaman Y. Oh D. S. Parno PhD (in progress) J. C. Peng M. Posik X. Qian Y. Qiang A. Rakhman R. D. Ransome S. Riordan A. Saha B. Sawatzky M. H. Shabestari A. Shahinyan S. Širca P. Solvignon R. Subedi V. Sulkosky A. Tobias W. Troth D. Wang Y. Wang B. Wojtsekhowski X. Yan H. Yao Y. Ye Z. Ye L. Yuan X. Zhan Y. Zhang Y.-W. Zhang B. Zhao X. Zheng PhD (complete) Further Acknowledgments • The DOE Office of Science • The Accelerator Division • The “Big Family” collaboration for setup help • The Transversity collaboration for many of the pictures used in this talk Thank you! Diana Parno - May 29, 2013 23 Backup Slides Diana Parno - May 29, 2013 24 DIS Vocabulary k’ k θ • Let’s define some useful variables in the lab frame (nucleon rest frame) Q2 º -q2 = 2EE '(1- cosq ) p×q nº = E - E' M Q2 Q2 xº = 2 p × q 2Mn Four-momentum transfer Electron energy loss (lab frame) Bjorken x (momentum fraction) Diana Parno - May 29, 2013 25 Polarized Structure Functions k’ • Longitudinally polarized beam and target k θ 2 ù d 2s ¯Ý d 2s Ý 4a 2 E ' é E + E 'cosq Q 2 2 = 2 ê g1 ( x,Q ) g x,Q )ú 2 2( dWdE ' dWdE ' Q E ë Mn Mn û • Longitudinally polarized beam and transversely polarized target é g ( x,Q 2 ) 2Eg ( x,Q 2 ) ù ds ds 4a E ' 1 2 ê ú = sin q cos f dWdE ' dWdE ' Q2 E Mn 2 êë Mn úû 2 ¯Þ 2 Þ 2 2 Diana Parno - May 29, 2013 26 Polarized Electron Beam • The electrons on target are longitudinally polarized…but how well polarized are they? N- - N¯ Pe = N + N¯ • Two measurement methods for E06-014: • Møller scattering (e-e- e- e- ) • Destructive measurement e-γ) • Non-destructive measurement • Circularly polarized photons • Longitudinally polarized electrons Diana Parno - May 29, 2013 From Hall A Møller Group Asymmetry • Compton scattering (e-γ Photon energy 27 BigBite • 3 multiwire drift chambers – Tracking – Momentum Scattered particles Adapted from Xin Qian, PhD thesis, 2010 • Gas Čerenkov – Exclude pions from trigger • 2 lead-glass calorimeters – Energy – Particle identification • Scintillator plane – Timing Diana Parno - May 29, 2013 28 5.9-GeV Cross Sections s raw s Ne-,dil 2 s Ne+,dil 2 s e+ • Radiative corrections have not been applied s corr Diana Parno - May 29, 2013 29 4.7-GeV Cross Sections s raw s Ne-,dil 2 s Ne+,dil 2 s e+ • Radiative corrections have not been applied s corr Diana Parno - May 29, 2013 30