Quarkonium Correlators in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Quarkonium Working Group Workshop QWG ‘07 Deutsches Elektronen Synchrotron (Hamburg),
Download ReportTranscript Quarkonium Correlators in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Quarkonium Working Group Workshop QWG ‘07 Deutsches Elektronen Synchrotron (Hamburg),
Quarkonium Correlators in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA Quarkonium Working Group Workshop QWG ‘07 Deutsches Elektronen Synchrotron (Hamburg), 19.10.07 1.) Introduction: Quarkonia Probing the QGP • immerse QQ -pair into the QGP Vacuum properties change: _ Q-Q Potential • color screening (reduced binding) Scattering Rates • dissociation reactions (and reverse!) • heavy-quark mass (→ mass, decay rates, threshold) Q Selfenergy Experiment: Heavy-Ion Collisions • yields; no access to spectral shape (?) • mass ↔ equilibrium number ~ exp(-M/T) • pT-spectra, v2(pT) Theory: - in-medium QQ-spectral functions - Euclidean correlators: lattice QCD ↔ effective models Outline 1.) Introduction 2.) Potential Models + Spectral Functions 2.1 SFs + Correlators, Lattice Results 2.2 Potential Models (Schrödinger/T-Matrix) 2.3 Uncertainties in Potential + HQ Mass 3.) T-Matrix Approach 3.1 Baseline Results 3.2 In-Medium HQ Masses 3.3 Width Effects 4.) Charmonia at RHIC 5.) Summary + Outlook 2.1 Euclidean Correlator + Timelike Spectral Function cosh( [ 1 / 2T ]) ( ,T ) d ( ,T ) sinh( / 2T ) 0 Early Example: Dileptons (r, ) integrate [RR ‘01] • schematic at the time [Wetzorke et al ‘01] 2.1.2 Lattice QCD Computations: G / Grecon + SFs cosh[ ( 1 / 2T )] G ( ,T ) d ( ,T ) , Grecon( ,T ) ~ vac ( ) sinh [ / 2T ] 0 • accurate “data” from lattice QCD hc cc [Datta et al ‘04] • S-wave charmonia little changed to ~2Tc, P-wave signal enhanced(!) • similar in other lQCD studies [Iida et al ’06, Jakovac et al ’07, Aarts et al ’07] 2.2 Potential-Model Approaches for Spectral Fcts. et al ’04, Wong • Schrödinger Eq. for bound [Shuryak ’05, Alberico et al ’05, Mocsy+Petreczky ’05] state + free continuum y() = Fy2 d( my )+ 2 Q( -Ethr) fythr /2 J/y Y’ cont. - improved for rescattering [Mocsy et al ’06, Laine ’07, Wong et al ’07, Alberico et al ‘07] Ethr • Lippmann-Schwinger-Eq. - T-Matrix: for Q-Q [Mannarelli+RR ’05,Cabrera+RR ‘06] TL( E ;q ,q' ) VL( q ,q' ) k 2dk VL( q ,k ) GQ0 Q ( E ,k ) TL( E ;k ,q' ) - 2-quasi-particle propagator: GQ0 Q ( s ) k /[ s / 4 ( k Q )2 ] - bound+scatt. states, nonperturbative threshold effects (large!) • Correlator: GL( E ) GQ0 Q GQ0 Q TL GQ0 Q L=S,P 2.3.1 Uncertainties I: “Lattice QCD-based” Potentials • free vs. internal energy: F1 (r;T) = U1(r;T) – T S(r;T) • (much) smaller binding for V1=F1 , V1 = (1-) U1 + F1 [Cabrera+RR ’06; Petreczky+Petrov’04] [Wong ’05; Kaczmarek et al ‘03] 2.3.2 Uncertainties II: Heavy-Quark Masses in the QGP • quarkonium mass: my= 2mc* - eB • asymptotic energies F∞ = U∞ - TS∞ U∞ [Kaczmarek +Zantow ‘05] F∞ • close to Tc: - increasing heavy-quark mass?! - entropy contribution? 3.) T-Matrix Approach 3.1 Baseline Results 3.2 In-Medium HQ Masses 3.3 Width Effects [Cabrera+RR ‘06] 3.1 Baseline Results: V1=U1, mc=1.7GeV fix, Gy small, Grec= Gvac hc • slightly overbound at 1.1Tc (or mc too small) • dissolves at >2.5Tc - T-Matrix Q-Q cc • quickly dissolves above Tc • ~40% variation in S-wave (1.1Tc overbound), P-wave: zero modes needed 3.2 T-Matrix with in-medium mc* - I • lattice U1-potential, mc* from U1 subtraction hc • upward shift due to large mc* at 1.1Tc • ~stable my=2mc*-eB above → correlator within ~20% 3.2.2 T-Matrix with in-medium mc* - II • lattice U1-potential, adjust mc* close to Tc + zero modes; S-Waves: T-Matrix Approach [Cabrera+RR in prep] Lattice QCD J/y hc • fair agreement! [Aarts et al. ‘07] 3.2.3 T-Matrix with in-medium mc* - II • lattice U1-potential, adjust mc* close to Tc + zero modes; P-Waves: T-Matrix Approach cc0 [Cabrera +RR in prep] Lattice QCD cc1 • fair agreement! [Aarts et al. ‘07] 3.2.4 Temperature Dependence of Charm-Quark Mass • significant deviation only close to Tc 3.3 Finite-Width Effects GQQ ( s ) k /[ s / 4 ( k Q )2 ] • dominant process depends on eB J/y Lifetime • c-quark width in propagator _ [Grandchamp+RR ‘01] • effect on correlator hc • moderate width → small enhancement [Cabrera+RR ‘06] 4.) Observables at RHIC: Centrality + pT Spectra • updated predictions including 3-momentum dependencies • balance direct - regenerated • sensitive to: mc* , Ncc [X.Zhao+ RR in prep] 5.) Summary • potential models useful tool to interpret finite-T lQCD • importance of nonperturbative threshold effects • consistency of bound+scatt. states + mc* mandatory (T-matrix) • significant uncertainties (U1 vs. F1 , mc*) • S-wave charmonia survival to 2-3Tc in line with lQCD correlators • no conclusive interpretation yet: threshold reduction compensates decreasing binding • quarkonium lifetimes of Y ≤ 1fm/c possibly relevant 4.) Suppression + Regeneration in Heavy-Ion Collisions • 3-Stage Dissociation: nuclear (pre-eq) -- QGP -- HG Stot = exp[-nuc r L] exp[-GQGP QGP ] exp[-GHG HG ] - nuc(SPS) ≈ 4.5mb - RHIC d-Au data → nuc≈ 0-3mb • Regeneration in QGP + HG: - microscopically: backward reaction (detailed balance!) J/y + g → c + c +X ← [PBM etal ’01, Gorenstein etal ’02,Thews etal ’01, Grandchamp+RR ’01, Ko etal ’02, Cassing etal ‘03] - for thermal c-quarks and gluons: key ingredients: (links to lattice QCD) dNy d Gy ( Ny Nyeq ) reaction rate (y -width) equilibrium limit ( N cc , my ,mc ) 3.3.2 Observables II: Excitation Function + Rapidity J/y Suppression vs. Regeneration [Grandchamp +RR ’01] • nontrivial “flat” dependence • similar interplay in rapidity!? (need accurate dNc/dy) Sequential Y’+ cc Suppression [Karsch,Kharzeev+Satz ‘06] • direct J/y essentially survive (even at RHIC)