Muskegon Watershed Research Partnership http://www.mwrp.net The vision: Collaborative, Integrated, Relevant Science for a better future Modeling Flow-dependent Habitat in the Lower Muskegon River: A Progress Report M.J.

Download Report

Transcript Muskegon Watershed Research Partnership http://www.mwrp.net The vision: Collaborative, Integrated, Relevant Science for a better future Modeling Flow-dependent Habitat in the Lower Muskegon River: A Progress Report M.J.

Muskegon
Watershed
Research
Partnership
http://www.mwrp.net
The vision:
Collaborative,
Integrated,
Relevant Science
for a better future
Modeling Flow-dependent Habitat in the
Lower Muskegon River: A Progress Report
M.J. Wiley, C.M. Riseng, E.S. Rutherford, and J.A. Tyler
With special thanks to Matt Ladewig,
Solomon David, and Lori Ivan
How do natural and other variations in
hydrology affect habitat and fish
recruitment in the Lower River?
Muskegon River Ecological Modeling System
(MREMS)
Land use/cover
Land Transformation
Model
Social Drivers
Cultural Models
& Data
(Sustainable Systems)
Physical River
Environment
Hydrogeol & Chem
Models (Table 1)
Ecological Services
Economic Valuation
Models
(Economic Model)
River/Watershed
Biology
Biological Models
(Table 2 and
affiliated MRP Proposal)
Climate
Historical
Flows
decades ~ x00 km2
Landscape
Empirical
LTM2 Model
weeks ~x000 km2
Reach Hydrology
days ~x km2
Reach Hydraulics
hours ~x00 km2
Empirical or Hec_HMS
via DSS record
Hec_RAS
days ~x m2
days x cm2
Local hydraulics and substratum
Steelhead IBM
Fish growth & mortality
Linking the Models
USACE
Hydrologic Eng. Center’s
River Analysis System (RAS)
[nexGen version of HEC-2]
With extensive utilization of
HEC GeoRAS extensions in
ArcView 3.1 environment
Tyler and Rutherford
2002
An Individual-based
Bioenergetics
Model (IBM)
developed initially for
Manistee River
Steelhead.
Habitat Modeling Objectives

Provide linkage between MREMS hydrologic
modeling and habitat sensitive IBM Bioenergetic
fisheries models

Simulate affects of daily hydrologic change on local
velocity, depth, substrate, and food availability
Key Modeling Issues

Large scale X IBM approach = excessive computation!

Large study extent precludes ground surveys for
topographic data

DEM errors and resolution

Limited biological surveys (modeling everywhere; sampling not!)
Key Modeling Solutions

Model by ecologically homogeneous Valley Segment
{VSEC}

Build a GIS model of reach channel habitat integrating
data air photo, ADP profiling, and field reconnascence

Use the GIS Channel Model and preliminary hydraulic
modeling to adjust DEM x,y,z

Link stratified biological (prey) sampling to GIS
Channel Model and summarize by substrate class
Thirteen study reaches on the Lower
Muskegon
18.2
17.2
30 km
Vsec subunit “boxes” defining RAS reach modeling extents
Building the GIS Channel Model
Air Photos (1998)
Field reconnaissance
Acoustic Doppler profiling
Building the Topographic Model
ArcViewGIS
Channel Model
high Res DEM
ArcViewGIS
“hydraulically Corrected”
Topographic Model
GeoRAS
GeoRAS
HEC-RAS V.I
HEC-RAS V.II
R
10335.49
9722.78*10434.*
10532.5*
9122.06* 9645.68*
10700.9*
9568.594
8451.590
8886.17*
10917.5*
7952.06*
8623.7738811.511
11070.65
7723.46*
11208.1*
7420.68*
11344.8*
7266.48*
11496.3*
7188.16*
7109.840
11656.3*
Area0
11812.1*
7022.23*
11970.77
182
6934.620
12979.97
12034.6*
6550.720
12844.51
12098.49
6475.64*
12726.27
12160.0*
6400.55*
12655.3*
12221.54
6325.478
12584.38
6028.507
5888.78*
Area1
Area2
1943.01*
2663.146
1328.43*
2818.500
1186.350
183.230*
2910.08*
1117.94*
451.471
3001.66*
1049.53*
3093.249
535.085*
981.133
3255.86*
795.253*
3418.475
5730.18*
5641.44*
5552.707
5410.12*
3518.43*
3618.385 3789.26*
LM
167 transects
20-50 cells per transect (Q dependent)
Typically ~4000-5000 cells
Depth, Velocity, Substrate
4202.10*
5253.43*
5168.03*
5082.642
4541.97* 4839.145
HEC_RAS Simulations run for 1 year
musk_18_2
Plan: Plan 02
2/10/2005
Legend
WS PF 1
Ground
Bank Sta
Levee
Ground
8.36
7.78 8.53
7.4*
9.59*
8.94
9.47
8.83* 9.20
8.72
10.24
10.39*
10.54
7.135*
7.02
6.84
0.36
.485*
0.61
Elevation (m)
208
206
204
202
200
198
196
194
192
190
12.13
6.345*
6.23
5.93
5.73
5.595*
5.46
1.75
1.312.57
1.09 2.72
2.86*
.99*3.00
0.89
3.32
3.52
10.75
10.98
11.18
11.32
11.49
11.64
11.88
12.00
12.75
12.49
5.25
5.12*
4.99
3.65*
test
3.905* 4.27
4.54
4.75
Plan: Pl an 2001
5/11/2005
L
WS 31
0
2000
4000
6000
8000
Main Channel Distance (m)
10000
12000
14000
Example cross-section
unsteady (continuous) run for: VSEC unit 18.2: yr=2001
Cross section ID= 6742.67 (meters up from downstrean end of 18.2)
Flows can be driven by hydrographs
from gage records or MREMS hydrologic models
Channel Unit 18.2 HEC_RAS hydraulic simulation at 20 cms
Cross-section scale data output for steelhead IBM
HEC-RAS Plan: Plan 02 River: LMR Reach: 182 Profile: PF 1
Reach
River Sta Profile Q Total Vel Chnl Flow Area Top Width Hydr Depth Max Chl Dpth Length Chnl Shear Chan Shear LOB Shear ROB
km from bottom
ID
(m3/s) (m/s)
(m2)
(m)
(m)
(m)
(m)
(N/m2)
(N/m2)
(N/m2)
182
12.89 PF 1
20
0.14
147.8
46.6
3.17
3.87
135.45
0.11
0
182
12.75 PF 1
20
1.03
19.44
24.83
0.78
1.09
118.24
10.21
182
12.63 PF 1
20
0.31
64.85
30.95
2.1
2.81
141.89
2.66
182
12.49 PF 1
20
0.19
105.12
61.3
1.71
2.15
101.3
1.46
182 12.39*
PF 1
20
0.23
85.81
74.8
1.15
1.66
101.3
1.54
182
12.29 PF 1
20
0.36
55.97
81.07
0.69
1.16
160.25
2.27
182
12.13 PF 1
20
0.12
169.47
70.95
2.39
3.68
123.05
0.09
182
12 PF 1
20
0.02
1024.06
132.56
7.73
11.24
127.72
0
0
182
11.88 PF 1
20
0.04
731.33
92.19
7.93
10.76
119
0.01
0
0
182 11.76*
PF 1
20
0.04
645.44
95.52
6.76
9.87
119
0.01
0
0
RAS interpolated cross-sections
Results for 2001-2002
Steelhead IBM operating in Muskegon River VSEC
18.2
-2
YOY Density (number * m )
10
1
0.1
Data
2001
2003
0.01
100
150
200
250
Day of Year
300
350
Next Steps

IBM coding needs more adjustment to take full
advantage of the spatial and temporal resolution
of the RAS modeling

Complete the other VSEC boxes and their
respective RAS Steelhead models

Begin exploring alternate hydrologic scenarios