Nonlinear Dynamic SSI Analysis of a Buried Reservoir FWR MWD’s Robert B. Diemer Water Treatment Plant Finished Water Reservoir (FWR)
Download ReportTranscript Nonlinear Dynamic SSI Analysis of a Buried Reservoir FWR MWD’s Robert B. Diemer Water Treatment Plant Finished Water Reservoir (FWR)
Nonlinear Dynamic SSI Analysis of a Buried Reservoir FWR MWD’s Robert B. Diemer Water Treatment Plant Finished Water Reservoir (FWR) FWR, Plot Plan & Section B-B’ EWWT A North Shear wall Shear wall B’ A B 20 ft Ravine 720 ft Design Earthquakes • MCE - M6.8 event on Wittier Fault, PGA=1.17 g • Landers, Superstition Hills, and Kobe records • Spectrally matched to design response spectrum: Design Horizontal Acceleration Histories 1.2 1.2 Acceleration (g) Landers / Lucerne Station, 275 Comp. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 5 10 15 Time (seconds) 20 25 30 1.2 1.2 Acceleration (g) Superstition Hills / Parachute Test Site Station, 225 Comp. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Kobe / KGMA Station, 000 Comp. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 Figure 4 FWR - North Wall East Wash Water Tank Section A Finished Water Reservoir FWR, Diemer Plant FWR - North Wall Section A East Wash Water Tank Foundation After 1971 S.F. EQ: 1. Removal of 3 ft of earth cover from roof 2. Excavation behind North Wall (up-slope) And addition of a separate retaining wall swale FWR, Diemer Plant Objectives 1. Investigate probable cause of horizontal cracking observed inside the reservoir at roughly mid-height of the north wall 2. Explore sensitivity to pre-shaking earth pressure behind wall 3. Evaluate seismic performance for MCE shaking Analysis Approach • 2D time domain, nonlinear dynamic SSI analyses with FLAC • Soil & bedrock simulated with elasto-plastic Mohr-Coulomb model • Reservoir, retaining walls, and bypass pipeline modeled with elastoplastic beam elements which develop plastic hinges • Hydrostatic pressures applied to reservoir wall and bottom slab • Hydrodynamic forces of reservoir water approximated with Westergaard added mass FWR North Wall - Section A 0 Fill Bedrock Non-reflective boundary “Free-Field” Boundary North “Free-Field” Boundary South 0 0 • Interface elements between soil and beam elements • Stiffness of two N-S shear walls simulated by rigidly linking horizontal displacements of roof and floor slabs. 0 -3.500 Material Properties Unit Weight (pcf) Friction Angle (degrees) Cohesion (psf) S-Wave Velocity (ft/sec) Fill 125 30 240 920 Bedrock 135 34 6,000 2,500 -2.500 -1.500 -0.500 0.500 0 1.500 Structural Properties – North Wall Structural Element Section Area (ft2/ft) Moment of Inertia (ft4/ft) * Yield Moment (kip.ft/ft) FWR Roof Slab 0.83 0.0241 31 FWR Floor Slab 1.04 0.0471 34 ** 0.22 0.0189 Elastic FWR Wall - Top - Bottom 1.17 1.67 0.0662 0.1929 52 77 Retaining Wall (Horizontal Leg) 1.50 2.00 0.1406 0.3333 38 67 FWR Columns * ** Cracked section (ACI, 2005) Distributed over 10-ft wide force trajectory for 20-ft column spacing Analysis Sequence with Model Calibration Based on Measured Wall Deflections 815 Original Structure 805 800 795 790 Elevation (ft) 810 Existing Structure 785 •Full reservoir •Excavate + retaining wall •Econcrete = 100%*Einitial •Ieff = 50%*Iuncracked •Empty reservoir 780 815 810 805 800 795 790 785 780 FWR, Diemer Plant Elevation (ft) Existing: ~21 mm deflection •Fully buried •Empty reservoir •Econcrete = 82%*Einitial •Icreep = 22%*Iuncracked •Full reservoir (809.25 ft) Ko = 0.7 produced “target” wall deflection = 21 mm Full reservoir Static equilibrium EQ shaking Figure 10 Earth-Pressure Distributions (Section A1) Before Excavation After Excavation 814 814 FW R Roof 812 FWR Wall Elevation (ft) FWR Roof 812 810 810 808 808 806 806 804 804 Ko = 0 . 7 802 802 Total Force 35 kips/ft 800 800 798 798 796 796 794 794 792 792 790 790 FWR Bottom Slab FWR Bottom Slab 788 788 786 0 FWR, Diemer Plant 1 2 3 4 5 6 7 P re s s u re (k s f) 8 9 0 1 2 3 4 5 6 7 Pressure (ksf) 8 9 786 Static-Moment Distribution (Section A1) Original, fully buried FWR structure “Before Excavation” 41.6 kip*ft/ft Moment initiating concrete cracking= 18.3 kip*ft/ft “After Excavation” (Following 1971 S.F. EQ) 38.5 kip*ft/ft FWR, Diemer Plant Earth Pressure Distribution before and after EQ for Varying K0 Before EQ Swale After EQ Swale FWR swale FWR Wall Ko = 0 . 5 1. 0 2 .0 FWR Slab 0 FWR Slab 4 8 0 4 8 Pressure (ksf) Pressure (ksf) A FWR A xial Fo rce (kips/ft) Probable Cause of Horizontal Cracking Axial-Force History in Swale for 0.25 PGA EQ 8 FWR Swale 4 Shaking-induced Axial Force In Swale A c c e l. ( g ) 0 0.3 M 4.6 Whittier Narrows, 1987 A FWR 0.0 -0.3 0 5 10 15 20 T im e (s e c o n d s ) 25 30 Total Force (kips/ft) Effect of Pre-EQ Ko on Shaking-Induced Soil Force 60 FWR ko=2.0 swale . 30 ko =1.0 ko=0.5 Shaking-induced soil force against FWR Accel. (g) 0 1.2 Input acc. history A 0.0 -1.2 FWR 0 5 10 15 20 Time (seconds) 25 30 Deformed Mesh and Wall Deflection History: MCE Shaking Acc. (g) Plastic rotation 0.025 Rads Deflec. (in.) 1.1 ft 0 -1 -2 Initial Ko=0.7 1.2 MCE - Landers 0.0 -1.2 0 10 20 30 Time (seconds) FWR North Wall - Post-shaking permanent deformations FWR North Wall – Deflection history Acc. (g) Plastic Rotation (% radian) Moment (kips.ft/ft) Moment & Plastic Rotation Histories at Wall and Floor 80 1 kip.ft/ft = 4.45 kN.m/m Wall 40 0 Floor -40 1.2 Reservoir 0.0 hinges Wall Floor -1.2 1.2 Landers 0.0 -1.2 0 5 10 15 Time (seconds) 20 25 30 Summary of Permanent Plastic Hinge Rotations for All Earthquakes (Initial runs for determining governing EQ) Earthquake Plastic Rotation (wall @ mid-height) (Radian) Plastic Rotation (floor slab @ corner) (Radian) Lucerne (normal) 0.76% 0.59% Lucerne (reversed) 0.13% 0.10% Kobe (normal) 0.34% 0.59% Kobe (reversed) 0 0.05% Superstition (normal) 0.16% 0.11% Superstition (reversed) 0.40% 0.38% FWR, Diemer Plant South Wall Analyses MWD’s Robert B. Diemer Water Treatment Plant Finished Water Reservoir (FWR) 12 caissons (10 ft o.c.) 20 caissons (10 ft o.c.) Section A Section B Diemer FWR – South Slope Diemer FWR – South Slope Diemer FWR – South Slope Soil Properties *) Shear-wave velocity (Vs) derived from downhole geophysical surveys Diemer FWR – South Slope Static F.S.= 1.23 Yield acceleration = 0.06g Shaking-induced deformation = 5.5 ft FWR (MCE) Fill Topsoil (Colluvium) Bedrock Top Soil (Colluvium) Diemer FWR – South Slope Static F.S.= 1.34 Yield acceleration = 0.08g Shaking-induced deformation = 4.8 ft (MCE) FWR Fill Bedrock Topsoil / Slope Wash FWR Wall top ~0.7ft South Slope Reservoir ~0.3ft Section A Buttress Wall 60 ft 10 ft 10 ft Panel top ~0.1ft Reservoir FWR South Slope ~0.1ft Section A Shear Panels 55 ft 30 ft 10 ft 10 ft 30 ft FWR Wall top <0.1 ft South Slope Section A Diaphragm Wall anchored into Reservoir Floor and/or Shear Walls 40 ft Reservoir <0.1 ft FWR - South Wall Analysis 0.8 Fill Colluvium Weathered Bedrock 0.7 Bedrock SECTION A1 - SOUTH 0.6 In the ravines the reservoir is supported by caissons to bedrock • • • • • N-S shear walls simulated by horizontally linking roof and floor slabs. Soil & bedrock >>> elasto-plastic Mohr-Coulomb model Reservoir & caissons >>> elasto-plastic beam elementss Hydrostatic pressures applied to reservoir wall and bottom slab Hydrodynamic forces approximated with Westergaard added mass 0.5 0.4 Structural Properties – South Wall Section Area (ft2/ft) Moment of Inertia * (ft4/ft) Yield Moment (kip.ft/ft) FWR Roof Slab 0.83 0.0241 31 FWR Floor Slab 1.04 0.0471 34 FWR Columns ** 0.22 0.0189 Elastic FWR Wall - Top - Bottom 1.17 1.67 0.0662 0.1929 52 77 S-Wall Caissons 0.5 0.0959 17 S-Wall Beam *** 37.3 ft2 935 ft4 11,150 kip.ft Structural Element *) Cracked section (ACI, 2005) **) Distributed over 10-ft wide force trajectory for 20-ft column spacing ***) Actual wall-beam properties (i.e. not distributed per ft) 0) 8.200 South Slope Displacement Vectors After Earthquake, Section A 8.100 +01 E+02 E+02 8.000 7.900 2E 1 7.800 00 7.700 2 7.600 Max displacement ~2 in South Wall Deformations After Earthquake, Section A Exaggerated 100 times ~ 2 in Moment (kip .ft) Moment and Shear Force History of Caisson During Earthquakes 100 70 40 10 -20 -50 -80 Acceleration (g) Shear Force (kip) 0 30 20 10 0 -10 -20 -30 FWR yield moment (39.5 kip.ft) yield moment (-39.5 kip .ft) 5 10 15 time (seconds) 20 25 30 shear capacity (19.6 kip) shear capacity (-19.6 kip) 0 5 10 15 time (seconds) 20 25 30 1.2 0.6 Landers/Lucerne Station, 275 Comp. Input 0.0 -0.6 -1.2 0 5 10 15 time (seconds) 20 25 30 South Wall - Model setup for “quasi-3D” analysis Structure Deformations (Landers EQ, Normal Polarity) Section A1, Exaggerated 5x Plastic Rotation @ Caisson Head: >5% Plastic Rotation @ Mid of Caisson: >5% Max. Caisson Deflection: 12.0 in Section A2, Exaggerated 5x Plastic Rotation @ Caisson Head: <0.1% Plastic Rotation @ Mid of Caisson: 0% Max. Caisson Deflection: 0.1 in South Wall, Exaggerated 2,000 x 0.06” Spring4 Spring3 FWR, Diemer Plant Spring2 Spring1 A2 A1 Section A1 History of Caisson Axial Force 300 300 4 Compression 200 2 1 200 A2 A1 Caisson is “hanging” on the South-Wall beam 100 0 0 Tension Axial Force (kip) 100 3 -100 -100 -200 -200 -300 -300 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 Section A2 History of Caisson Axial Force 900 900 800 800 700 700 4 3 2 1 A2 600 A1 500 500 400 400 300 300 Compression Axial Force (kip) 600 200 100 0 0 200 100 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 History of Spring 1 Axial Force 900 900 800 800 4 700 3 2 1 700 A1 600 600 500 500 400 400 300 300 Compression Axial Force (kip) A2 200 100 0 0 200 100 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 History of Spring 2 Axial Force 900 900 800 800 700 4 3 2 A2 600 A1 600 500 500 400 400 300 300 Compression Axial Force (kip) 700 1 200 100 0 0 200 100 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 History of Spring 2 Axial Force 900 900 800 800 700 4 3 2 A2 600 A1 600 500 500 400 400 300 300 Compression Axial Force (kip) 700 1 200 100 0 0 200 100 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 Reservoir Wall Moment after Landers EQ (Section A1) 363 kip*ft 834= kip*ft Max. 834 kip*ft FWR, Diemer Plant Reservoir Wall-Beam Moment History 4000 4000 2000 2000 Moment (kip.ft) 0 0 -2000 -2000 -4000 -4000 -6000 -6000 Note: Moment history recorded at wall-beam element to the right of Caisson A1 - in the axis of the canyon -8000 -8000 -10000 -10000 0 5 10 15 Time (seconds) 20 25 30 Acceleration (g) 1.2 1.2 Landers/Lucerne Station, 275 deg. 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 -1.2 0 FWR, Diemer Plant 5 10 15 Time (seconds) 20 25 30 Section A1 - Reservoir Roof Moment &Plastic Rotation Moment (kip.ft) 80 80 yield moment = 66 kips.ft 40 40 0 0 -40 yield moment = -66 kips.ft -80 Plastic Rotation (rad) 0 5 10 15 time (seconds) 20 25 0.010 -40 -80 30 0.010 hingelocation Reservoir 0.005 0.005 0.000 0 5 10 15 time (seconds) 20 25 Acceleration (g) 1.2 0.000 30 1.2 Landers/Lucerne Station, 275 deg 0.6 0.6 0.0 0.0 -0.6 -0.6 -1.2 0 FWR, Diemer Plant 5 10 15 time (seconds) 20 25 -1.2 30 Study Conclusions • Performance Criterion: Prevention of structural collapse which would result in uncontrolled release of water from the reservoir • FEMA 356 allows up to 0.02 radians of plastic rotation for “collapse prevention” level of performance of primary structural members • Plastic rotations are less than 0.02 radians for all sections analyzed • Finished Water Reservoir structure was concluded to be seismically stable for MCE shaking