POLYPHASE CIRCUITS LEARNING GOALS Three Phase Circuits Advantages of polyphase circuits Three Phase Connections Basic configurations for three phase circuits Source/Load Connections Delta-Y connections Power Relationships Study power delivered.
Download ReportTranscript POLYPHASE CIRCUITS LEARNING GOALS Three Phase Circuits Advantages of polyphase circuits Three Phase Connections Basic configurations for three phase circuits Source/Load Connections Delta-Y connections Power Relationships Study power delivered.
POLYPHASE CIRCUITS LEARNING GOALS Three Phase Circuits Advantages of polyphase circuits Three Phase Connections Basic configurations for three phase circuits Source/Load Connections Delta-Y connections Power Relationships Study power delivered by three phase circuits Power Factor Correction Improving power factor for three phase circuits THREE PHASE CIRCUITS Van 3 phase voltage Vbn Vcn 0 120 240 Instantane ous Phase Voltages van (t ) Vm cos( t )(V ) vbn (t ) Vm cos( t 120)(V ) vc (t ) Vm cos( t 240)(V ) Vm 120 2 a a + _ V0 Wye Connected Source n _ V-240 + c _ V-120 + b b c Delta Source a a _ + + Delta Source _ Vbc = Vab -120 b c _ Vab = | Vab | 0 b + c Vca = Vab -240 Wye – Wye System a A Zl ZL n N ZL c b B Zl Zl ZL C Delta – Delta System a A Zl + ZL ZL _ + c _ _ + b B Zl Zl C ZL Delta – Wye System a A Zl _ ZL + + _ ZL c _ + b B Zl Zl ZL C a a A I aA I AB + _ I CA V0 Z Z n _ V-240 + _ I BC V-120 + b b c C B Z c Vcn - Vbn Vab 30 o Van Vbn Vab = Van - Vbn Vab = 3 Van 30o Vab Van Vbn | V p | 0 | V p | 120 | V p | 1 (cos120 j sin 120) 1 3 | V | p | V p | j 2 2 3 | V p | 30 Vbc 3 | V p | 90 Vca 3 | V p | 210 VL 3 | V p | Line Voltage I CA I aA = 3 I AB -30o I AB I aA I BC - I CA INSTANTANEOUS POWER Instantane ous Phase Voltages van (t ) Vm cos( t )(V ) Balanced Phase Currents ia (t ) I m cos( t ) vbn (t ) Vm cos( t 120)(V ) ib (t ) I m cos( t 120) vc (t ) Vm cos( t 240)(V ) ic (t ) I m cos( t 240) Instantane ous power p(t ) van (t )ia (t ) vbn (t )ib (t ) vcn (t )ic (t ) Theorem For a balanced three phase circuit the instantaneous power is constant p( t ) 3 Vm I m cos (W ) 2 REVIEW OF Y Transformations Ra R1R2 R1 R2 R3 Rb R2 R3 R1 R2 R3 Rc R3 R1 R1 R2 R3 Y R1 Ra Rb Rb Rc Rc Ra Rb R2 Ra Rb Rb Rc Rc Ra Rc R3 Ra Rb Rb Rc Rc Ra Ra Y Rab R2 || ( R1 R3 ) REVIEW OF Y Transformations Y Rab Ra Rb Y Ra R1 Rb R1 Rb R2 Rb R1 R1R2 R R 3 2 Ra Rc R1 Rc R2 ( R1 R3 ) Ra R R R Rb R3 1 2 3 Ra Rb REPLACE IN THE THIRD AND SOLVE FOR R1 R1 R2 R3 R2 R3 Rb R1 R2 R3 Ra Rb Rb Rc Rc Ra R3 ( R1 R2 ) R 1 Rb Rc Rb R R 3 1 R1 R2 R3 Rc R1 R2 R3 R R Rb Rc Rc Ra R2 a b Rc Y R (R R ) Rc Ra 1 2 3 R1 R2 R3 SUBTRACT THE FIRST TWO THEN ADD TO THE THIRD TO GET Ra R3 Ra Rb Rb Rc Rc Ra Ra Y POWER FACTOR CORRECTION Similar to single phase case. Use capacitors to increase the power factor Balanced load Low pf lagging Keep clear about total/phase power, line/phase voltages Q Qnew Qold Reactive Power to be added To use capacitors this value should be negative pf pf cos f sin f 1 pf 2 tan f 2 1 pf Q P tan f lagging Q 0 LEARNING EXAMPLE f 60 Hz , | Vline | 34.5kV rms . Required : pf 0.94 leading Pold 18.72 MW S P jQ P | S | cos f Q | S | sin f pf cos f Q P tan f tan f pf 1 pf 2 lagging Qold 0 pf cos f sin f 1 pf 2 0.626 | Qold | 15.02 MVA Pold 18.72 MW Qnew 6.8 MVA pf new 0.94 leading Q 6.8 15.02 21.82 MVA Qper capacitor 7.273MVA Y connection Vcapacitor 34.5 kV rms 3 34.5 103 6 7.273 10 2 60 C 3 C 48.6 F 2 LEARNING BY DESIGN Proposed new store #4ACSR wire rated at 170 A rms S1 70036.9 S2 100060kVA S3 80025.8kVA 560 j 420 kVA 500 j866 kVA 720 j 349 kVA Stotal 1780 j1635 kVA 241742.57 kVA | Stotal | 2.417 106 | I line | 101.1A rms 3 3 Vline 3 13.8 10 Wire is OK Pold Qnew P tan f ( new) 758.28kVA pf new Q Qnew Qold 876.72kVA |Q per capacitor | CV 2 876.72 10 / 3 C 2 60 13.8 10 / 3 3 3 2 12.2 F