Why Mixed Finite Elements are not used in the Petroleum Industry and what can we do about it ? Ilya D.
Download ReportTranscript Why Mixed Finite Elements are not used in the Petroleum Industry and what can we do about it ? Ilya D.
Why Mixed Finite Elements are not used in the Petroleum Industry and what can we do about it ? Ilya D. Mishev IMA Workshop on Compatible Discretizations May 11-16 14, 2004 Outline Introduction to Petroleum Industry Compositional model (Black Oil model) – Black Oil is considered as a particular case of Compositional General framework Examples 2 Introduction to Petroleum Industry Seismic map Geologic model Analogs interpretation Reservoir model Cores 3 Logs Compositional Model Phases - liquid (l), vapor (v), and aqueous (a) - N P phases, components - methane, ethane, propane, etc., - N C components n Conservation of mass Wi V Ui n Ri , V V Wi T zi , T Volume V Wi Ui Ri Sj t overall concentration, component flow rate, sources and sinks, saturation of phase j. 4 j zi xij i 1,, NC , NP S , j j j 1 NP Ui x v . ij j j j 1 porosity, molar density of phase j, mole fraction of component i, mole fraction of component i in phase j Compositional Model - cont. Darcy law (generalized) vj Kk rj j Pj j gD , Pj P Pc , j , j v, a, P Pl . vj Pj Pc , j j K absolute permeability, phase velocity, k rj relative permeability of phase j, phase pressure, capillary pressure, j mass density of phase j, viscosity of phase j, g gravitational acceleration, D depth. 5 Compositional Model - cont. Volume balance laws - total volume balance = pore volume - VP total volume of fluids - VT VP ( P) VT ( P, N) VP VT P t t t VT Vl Vv Va , N ( N1 ,, N NC ), 6 N i moles of comp i NC i 1 VT Ri U i N i “pressure equation” Compositional Model - cont. Volume balance laws - liquid phase volume balance = liquid saturation V P volume of liquid - V l S lVP ( P) Vl ( P, N), S l VP P Vl P VP Sl t P t P t NC i 1 Vl Ri U i N i The equations for the other phase saturations are similar. 7 “saturation of oil equation” Compositional Model - cont. 1 Simplify - no capillary pressure, no saturation equations. N i U i Ri , i 1, , N C , t N K Ui P ij ( N)P j 1 0 , i 1, , N C VP VT Linearize (typically first discretize then linearize) N i U i Ri , i 1, , N C , t K 1U i NC N ij j iPP f i , i 1, , N C , j 1 NC i 1 8 i iP N PP P f P . N U R t N 1 K U A f P Compositional Model - cont. K 1u p 0 u f (Kp) f p0 K 1u v p v 0 K 1u v ap v 0 K N U A f , P T N a fP. P K 1u v p (av) 0 x 1 K 1u v p v 0, x ui Wang, Yotov, Wheeler, et. al introduced (possible problems for9 non smooth solution) 1 K A 1 N U A1f P We have to discretize N i , p. Pi Grids pinchouts 10 General framework Given general cell centered grid – build dual grid to approximate the fluxes, – choose approximation space for the pressure, – define local approximation of the flux on the dual volume, – exclude fluxes to get the finite volume method 11 General framework Model problem written as a system Find (u, p) U P such that (primal dual MFEM) K 1u v p v 0 K 1u p 0 u f v V , u q f q q Q . Find (u h , ph ) U h Ph such that K 1u h v h p h vh 0 v h Vh , K i Fh K i u K i K i 12 h n qh fq h qh Qh . Examples Rectangular grid / full tensor (Ware, Parrott, and Rogers) Dual grid - rectangles, k l ekl Ph ,Qh - piecewise constants, Uh ,Vh - piecewise constant vectors with continuous normals Basis vectors eij , eik , e jl , ekl v vijeij vikeik v jle jl vklekl i j vij v n ij , vik v n ik , lij lik v jl v n jl , vkl v n kl , M., “Analysis of a new Mixed Finite Volume Method”, Comp. Methods Appl. Math. V. 3, 2003 13 l jl lkl Examples 1 K uh vh v E h E h (Ware, Parrott, and Rogers) n E [ ph ] 0 v h eij , eik , e jl , e kl , uijtij,ij uik tik ,ij u jlt jl ,ij uklt kl ,ij p j pi 0, uijtij,ik uik tik ,ik u jlt jl ,ik uklt kl,ik pk pi 0, uijtij, jl uik tik , jl u jlt jl , jl uklt kl, jl pl p j 0, uijtij,kl uik tik ,kl u jlt jl ,kl uklt kl,kl pl pk 0, where t mn , pq K 1e mn e pq , or u h Tp h , p h pi p j , pi pk , p j pl , pk pl , u V h T n f V [ p]E lim p( x tn E ) p( x tn E ) t 0, t 0 14 Examples (Ware, Parrott, and Rogers) Theorem: || u u h ||0, || p ph ||1,h Ch || u ||1, | p |2, , where || q ||1,2 h ~ 2 ( q q ) i j neighbors Numerical example: K ( x, y ) RD( x, y ) RT , d1 0 cos( ) sin( ) D ( x, y ) , R , , sin( ) cos( ) 0 d 4 2 d1 1 2 x 2 y 2 y 5 , d 2 1 x 2 2 y 2 x 3 , p( x, y ) sin(x) sin(y ). 15 Examples (Ware, Parrott, and Rogers) Errors Error L2 -error of the pressure, H 1 - error of the pressure, L2 -error of the flux, H div - error of the flux 8 16 32 64 Mesh points 16 128 256 Examples Voronoi/Donald mesh / full tensor 17 Unstructured (Voronoi) grids I )x ( k K - scalar coefficient E p ph 1, Ch p 2, (M. “Finite Volume Methods on Voronoi Meshes”,Numer. Meth. PDE, Herbin, et. al.) hu What about K 1u h v h v approximation h n E [ ph ] 0 h n qh E h E u K i K i fq v h U h , h qh Ph . Ph piecewise constants, U h piecewise constants to approximate the normal component of the f lux on DE . 18 Unstructured (Voronoi) grids E u uh 0, p ph 1, Ch p 2, , u 2 0, u n . 2 E E edge DE For grids with extra regularity u uh Ch 1/ 2 h ( div, ) p 2, , u 2 h ( div, ) Hypothesis: The approximation of h u could be improved with post-processing. 19 u n E edge E 2 E Examples (Voronoi/Donald mesh / full tensor) Dual grid - triangles, Ph - linear piecewise continuous functions, Qh- piecewise constants on Voronoi volumes, U h , Vh - piecewise constants on triangles with continuous normals e ij n ij 1, lij e vij v nij , vik v nik , v jk v n jl , lij lik e ij n ik 0, lik ik n ij 0, lij v vijeij vikeik v jke jk e n ij 0, lij l jl M. “A New Flexible Mixed Finite Volume Method”, submitted 20 ij n jk 0, l jl e ik n ik 1, lik jk e e lik e ik n jk 0, l jl jk n ik 0, e l jl jk n jk 1, Examples (Voronoi/Donald mesh / full tensor) Discrete problem: Find (uh , ph ) Uh Ph 1 K u h v h p h v h 0 such that v h U h , u K i K i h n qh f qh qh Ph . For v h e ij , e ik , e kl Tu h Mp h 0, u h T 1Mp h . T heorem: || u u h ||0, || p ph ||1, Ch (|| u ||1, | p |2, ) 21 Error estimates Find (uh , ph ) Uh Ph such that ah (u h , v h ) bh ( v h , ph ) g , v h ch (u h , ph ) f , qh v h Vh qh Qh , ch (.,.) continuous and a h (u h , v h ) i ) inf sup , LBB (inf-sup) conditions u h U 0 h v V || u h||U || v h||V h h h h bh ( v h , p h ) ii) inf sup , U 0 h u h U h , ch (u h , qh ) 0, q h Qh , ph Ph v V || v h||V || p h|| P h 1h h h ch (u h , qh ) iii) inf sup , V1h v h Vh , a h (u h , v h ) 0, u h U 0 h . qh Qh u U || v h||V || q h||Q h h h h a h (.,.), bh (.,.), dim(Uh ) dim(Ph ) dim(V h ) dim( Q h ) . || u u h ||Vh || p ph ||Ph C infvhVh || u v h ||Vh infqhPh || p qh ||Ph ... . 22 Extra 23 Black Oil Model Phases Components + Gas + + Reservoir Reservoir Conditions Conditions + Oil + + Water Standard Conditions 24 Black Oil Model Phases - liquid, vapor, aqueous components - oil, gas, water C/P o g w l x x v a x x 25 Uo l vl , U g x g ,l l v l x g ,v v v v , Uw a va , Black Oil Model Phases - liquid, vapor, aqueous components - oil, gas, water C/P o l x v a U o l vl , Uw a va , w No mass transfer between the phase x If only 2 phases exist total velocity, global pressure (Chavent, Jaffre) 26 v K (Pg G ), v v l v a v f t Black Oil Model Phases - liquid, vapor, aqueous components - oil, gas, water C/P o g w l x x v x x 27 a x x U o xo,l l v l xo,v v v v , U g x g ,l l v l x g ,v v v v x g ,a a v a , Uw a va , Examples Quadrilateral mesh / full tensor (M. Edwards et. al.) Dual grid - cell-centers connected with the middles of the edges/faces Ph - P piecewise linears h (nonconforming space) Qh - piecewise constants on the cell pressure U h -piecewise constants with continuous normals (4 dof), Vh - piecewise constants (8 dof) pressure pressure to be eliminated velocity 28 Examples (quads) u v Kp v 0 v V u q f q u h vh q Q 4 Kp K i Fh j 1 K i j u K i K i 29 h h vh 0 n qh f q h v h Vh , qh Q h . Example (quads) u h vh 4 K p K i Fh j 1 K i j h vh 0 v h Vh , u h uijeij uik eik u jl e jl ukle kl . For v h fij ,i , fik ,i , f ij, j , f jl , j , f kl ,k , fik ,k , f kl ,l , f jl ,l solve the linear system ph Nuh M 0, p1,h N 8 4, M 8 8 matrices, for u h uij , uik , u jl , ukl , p1,h pij , pik , p jl , pkl , i.e., T u h Tp h , p h pi , p j , pl , pk . 30 T