Why Mixed Finite Elements are not used in the Petroleum Industry and what can we do about it ? Ilya D.
Download
Report
Transcript Why Mixed Finite Elements are not used in the Petroleum Industry and what can we do about it ? Ilya D.
Why Mixed Finite Elements are not used in
the Petroleum Industry and what can we do
about it ?
Ilya D. Mishev
IMA Workshop on Compatible Discretizations
May 11-16 14, 2004
Outline
Introduction to Petroleum Industry
Compositional model (Black Oil model)
– Black Oil is considered as a particular case of Compositional
General framework
Examples
2
Introduction to Petroleum Industry
Seismic map
Geologic model
Analogs
interpretation
Reservoir model
Cores
3
Logs
Compositional Model
Phases
- liquid (l), vapor (v), and aqueous (a) - N P phases,
components - methane, ethane, propane, etc.,
- N C components
n
Conservation of mass
Wi
V
Ui n Ri ,
V
V
Wi T zi , T
Volume V
Wi
Ui
Ri
Sj
t
overall concentration,
component flow rate,
sources and sinks,
saturation of phase j.
4
j
zi
xij
i 1,, NC ,
NP
S ,
j j
j 1
NP
Ui
x v .
ij j j
j 1
porosity,
molar density of phase j,
mole fraction of component i,
mole fraction of component i in phase j
Compositional Model - cont.
Darcy law (generalized)
vj
Kk rj
j
Pj j gD ,
Pj P Pc , j , j v, a, P Pl .
vj
Pj
Pc , j
j
K absolute permeability,
phase velocity,
k rj relative permeability of phase j,
phase pressure,
capillary pressure, j mass density of phase j,
viscosity of phase j, g gravitational acceleration,
D depth.
5
Compositional Model - cont.
Volume balance laws - total volume balance
=
pore volume - VP
total volume of fluids - VT
VP ( P) VT ( P, N)
VP VT P
t t
t
VT Vl Vv Va ,
N ( N1 ,, N NC ),
6
N i moles of comp
i
NC
i 1
VT
Ri U i
N i
“pressure equation”
Compositional Model - cont.
Volume balance laws - liquid phase volume balance
=
liquid saturation V P
volume of liquid - V l
S lVP ( P) Vl ( P, N),
S l VP P
Vl P
VP
Sl
t P t
P t
NC
i 1
Vl
Ri U i
N i
The equations for the other phase saturations are similar.
7
“saturation of oil
equation”
Compositional Model - cont.
1
Simplify - no capillary pressure, no saturation equations.
N i
U i Ri , i 1, , N C ,
t
N
K Ui
P
ij ( N)P
j 1
0 , i 1, , N C
VP VT
Linearize (typically first discretize then linearize)
N i
U i Ri , i 1, , N C ,
t
K 1U i
NC
N
ij
j
iPP f i , i 1, , N C ,
j 1
NC
i 1
8 i
iP N
PP P f P .
N
U R
t
N
1
K U A f
P
Compositional Model - cont.
K 1u p 0
u f
(Kp) f
p0
K 1u v p v 0
K 1u v ap v 0
K
N
U A f ,
P
T N
a fP.
P
K 1u v p (av) 0
x
1
K 1u v p v 0,
x
ui
Wang, Yotov, Wheeler, et. al introduced
(possible problems for9 non smooth solution)
1
K A
1
N
U A1f
P
We have to discretize N i , p.
Pi
Grids
pinchouts
10
General framework
Given general cell centered grid
– build dual grid to approximate the fluxes,
– choose approximation space for the pressure,
– define local approximation of the flux on the dual volume,
– exclude fluxes to get the finite volume method
11
General framework
Model problem written as a system
Find
(u, p) U P
such that (primal dual MFEM)
K 1u v p v 0
K 1u p 0
u f
v V ,
u q f q
q Q .
Find (u h , ph ) U h Ph such that
K 1u h v h
p
h
vh 0
v h Vh ,
K i Fh K i
u
K i K i
12
h
n qh
fq
h
qh Qh .
Examples
Rectangular grid / full tensor (Ware, Parrott, and Rogers)
Dual grid - rectangles,
k
l
ekl
Ph ,Qh - piecewise constants,
Uh ,Vh - piecewise constant
vectors with continuous normals
Basis vectors eij , eik , e jl , ekl
v vijeij vikeik v jle jl vklekl
i
j
vij v n ij , vik v n ik ,
lij
lik
v jl v n jl , vkl v n kl ,
M., “Analysis of a new Mixed Finite Volume Method”,
Comp. Methods Appl. Math. V. 3, 2003
13
l jl
lkl
Examples
1
K
uh vh
v
E h E
h
(Ware, Parrott, and Rogers)
n E [ ph ] 0 v h eij , eik , e jl , e kl ,
uijtij,ij uik tik ,ij u jlt jl ,ij uklt kl ,ij p j pi 0,
uijtij,ik uik tik ,ik u jlt jl ,ik uklt kl,ik pk pi 0,
uijtij, jl uik tik , jl u jlt jl , jl uklt kl, jl pl p j 0,
uijtij,kl uik tik ,kl u jlt jl ,kl uklt kl,kl pl pk 0,
where t mn , pq K 1e mn e pq , or
u h Tp h , p h pi p j , pi pk , p j pl , pk pl ,
u
V
h
T
n f
V
[ p]E lim p( x tn E ) p( x tn E )
t 0, t 0
14
Examples
(Ware, Parrott, and Rogers)
Theorem:
|| u u h ||0, || p ph ||1,h Ch || u ||1, | p |2, ,
where || q ||1,2 h ~
2
(
q
q
)
i j
neighbors
Numerical example:
K ( x, y ) RD( x, y ) RT ,
d1 0
cos( ) sin( )
D ( x, y )
,
R
,
,
sin( ) cos( )
0
d
4
2
d1 1 2 x 2 y 2 y 5 , d 2 1 x 2 2 y 2 x 3 ,
p( x, y ) sin(x) sin(y ).
15
Examples
(Ware, Parrott, and Rogers)
Errors
Error
L2 -error of the pressure,
H 1 - error of the pressure,
L2 -error of the flux,
H div - error of the flux
8
16
32
64
Mesh points
16
128
256
Examples
Voronoi/Donald mesh / full tensor
17
Unstructured (Voronoi) grids
I )x ( k K - scalar coefficient
E
p ph
1,
Ch p 2,
(M. “Finite Volume Methods on Voronoi Meshes”,Numer. Meth. PDE,
Herbin, et. al.)
hu
What about
K 1u h v h
v
approximation
h
n E [ ph ] 0
h
n qh
E h E
u
K i K i
fq
v h U h ,
h
qh Ph .
Ph piecewise constants,
U h piecewise constants to approximate
the normal component of the f lux on DE .
18
Unstructured (Voronoi) grids
E
u uh
0,
p ph
1,
Ch p
2,
,
u
2
0,
u n
.
2
E
E edge DE
For grids with extra regularity
u uh
Ch
1/ 2
h ( div, )
p
2,
,
u
2
h ( div, )
Hypothesis: The approximation of h u
could be improved with post-processing.
19
u n
E edge E
2
E
Examples
(Voronoi/Donald mesh / full tensor)
Dual grid - triangles,
Ph - linear piecewise continuous functions,
Qh- piecewise constants on Voronoi volumes,
U h , Vh - piecewise constants on triangles
with continuous normals
e
ij
n ij 1,
lij
e
vij v nij , vik v nik , v jk v n jl ,
lij
lik
e
ij
n ik 0,
lik
ik
n ij 0,
lij
v vijeij vikeik v jke jk
e
n ij 0,
lij
l jl
M. “A New Flexible Mixed Finite Volume Method”, submitted
20
ij
n jk 0,
l jl
e
ik
n ik 1,
lik
jk
e
e
lik
e
ik
n jk 0,
l jl
jk
n ik 0,
e
l jl
jk
n jk 1,
Examples
(Voronoi/Donald mesh / full tensor)
Discrete problem:
Find
(uh , ph ) Uh Ph
1
K
u h v h p h v h 0
such that
v h U h ,
u
K i K i
h
n qh f qh qh Ph .
For v h e ij , e ik , e kl
Tu h Mp h 0, u h T 1Mp h .
T heorem:
|| u u h ||0, || p ph ||1, Ch (|| u ||1, | p |2, )
21
Error estimates
Find
(uh , ph ) Uh Ph
such that
ah (u h , v h ) bh ( v h , ph ) g , v h
ch (u h , ph ) f , qh
v h Vh
qh Qh ,
ch (.,.) continuous and
a h (u h , v h )
i ) inf sup
, LBB (inf-sup) conditions
u h U 0 h v V || u h||U || v h||V
h
h
h
h
bh ( v h , p h )
ii) inf sup
, U 0 h u h U h , ch (u h , qh ) 0, q h Qh ,
ph Ph v V || v h||V || p h|| P
h
1h
h
h
ch (u h , qh )
iii) inf sup
, V1h v h Vh , a h (u h , v h ) 0, u h U 0 h .
qh Qh u U || v h||V || q h||Q
h
h
h
h
a h (.,.),
bh (.,.),
dim(Uh ) dim(Ph ) dim(V h ) dim( Q h ) .
|| u u h ||Vh || p ph ||Ph C infvhVh || u v h ||Vh infqhPh || p qh ||Ph ... .
22
Extra
23
Black Oil Model
Phases
Components
+
Gas
+
+
Reservoir
Reservoir
Conditions
Conditions
+
Oil
+
+
Water
Standard Conditions
24
Black Oil Model
Phases
- liquid, vapor, aqueous
components - oil,
gas, water
C/P
o
g
w
l
x
x
v
a
x
x
25
Uo l vl ,
U g x g ,l l v l x g ,v v v v ,
Uw a va ,
Black Oil Model
Phases
- liquid, vapor, aqueous
components - oil,
gas, water
C/P
o
l
x
v
a
U o l vl ,
Uw a va ,
w
No mass transfer
between the phase
x
If only 2 phases exist
total velocity, global pressure
(Chavent, Jaffre)
26
v K (Pg G ), v v l v a
v f
t
Black Oil Model
Phases
- liquid, vapor, aqueous
components - oil,
gas, water
C/P
o
g
w
l
x
x
v
x
x
27
a
x
x
U o xo,l l v l xo,v v v v ,
U g x g ,l l v l x g ,v v v v x g ,a a v a ,
Uw a va ,
Examples
Quadrilateral mesh / full tensor (M. Edwards et. al.)
Dual grid - cell-centers connected with the middles of the edges/faces
Ph - P
piecewise linears
h
(nonconforming space)
Qh - piecewise constants on
the cell
pressure
U h -piecewise constants with
continuous normals (4 dof),
Vh - piecewise constants (8 dof)
pressure
pressure to be eliminated
velocity
28
Examples (quads)
u v Kp v 0
v V
u q f q
u
h
vh
q Q
4
Kp
K i Fh j 1 K i
j
u
K i K i
29
h
h
vh 0
n qh f q h
v h Vh ,
qh Q h .
Example (quads)
u
h
vh
4
K p
K i Fh j 1 K i
j
h
vh 0
v h Vh ,
u h uijeij uik eik u jl e jl ukle kl .
For v h fij ,i , fik ,i , f ij, j , f jl , j , f kl ,k , fik ,k , f kl ,l , f jl ,l
solve the linear system
ph
Nuh M 0,
p1,h
N 8 4, M 8 8 matrices,
for u h uij , uik , u jl , ukl , p1,h pij , pik , p jl , pkl , i.e.,
T
u h Tp h , p h pi , p j , pl , pk .
30
T