TESLA - The TEV-Energy Superconducting Linear Accelerator Light Higgs Production at the Tesla Photon Collider Aura Rosca DESY Zeuthen Amsterdam, Netherlands, 1-4 April 2003
Download ReportTranscript TESLA - The TEV-Energy Superconducting Linear Accelerator Light Higgs Production at the Tesla Photon Collider Aura Rosca DESY Zeuthen Amsterdam, Netherlands, 1-4 April 2003
TESLA - The TEV-Energy Superconducting Linear Accelerator Light Higgs Production at the Tesla Photon Collider Aura Rosca DESY Zeuthen Amsterdam, Netherlands, 1-4 April 2003 TESLA - The TEV-Energy Superconducting Linear Accelerator Motivation • Measure the two-photon partial width: – Contribution to the two photon decay width from any kind of massive charged particles. Any deviation of the partial width from SM prediction: • Evidence for new physics; • Can be directly compared to predictions of alternative models (MSSM, NMSSM, general 2HDM). April 2003 Aura Rosca DESY-Zeuthen 2 TESLA - The TEV-Energy Superconducting Linear Accelerator How to Get Widths? • The Higgs mass peak gives Γ(h γγ) BR(h bb) (mh 140 GeV) • Taking BR(h bb) and from LHC or LC, Γ γγ BR(h γγ) Γ(h γγ) BR(h b b ) BR(h b b ) Γ γγ Γ tot BR(h γγ) • This is proposed as the way to get the total width. This would be a modelindependent result. April 2003 Aura Rosca DESY-Zeuthen 3 TESLA - The TEV-Energy Superconducting Linear Accelerator • Realistic Luminosity Spectra and Polarization for the Photon Beams Circe 2.0 dL 1.57 fb-1 /GeV d s γγ • Luminosity spectra for J=0,2 with s ee 210 GeV 2λ e 85%, Pc 100% x 1.8 • Total luminosity for April 2003 z s γγ 80 GeV, Aura Rosca DESY-Zeuthen L 80 fb-1 . 4 TESLA - The TEV-Energy Superconducting Linear Accelerator The Signal • Adjust beam polarization to increase the signal cross section; • If m h know, adjust photon energies to have s mh . mh 120 GeV • Higgs boson has spin-0 Γ tot 4 MeV – It is produced from J=0 NS ( γγ h b b ) (1 λ1 λ 2 ), April 2003 dL γγ d s γγ mh BR(h b b ) 68% 4 π Γ(h γγ)BR(h b b ) BR(h γγ) 0.22% 2 m dL -1 2 λ i photon helicities Aura Rosca d s γγ 1.57 fb /GeV NS 20000 events/year DESY-Zeuthen 5 TESLA - The TEV-Energy Superconducting Linear Accelerator Higgs Decay • Light Higgs (mh 140 GeV) BR(h bb) dominant • Signature – 2-jet events • Background b b γγ b b (g) γγ cc(g) – large cross sections, can be suppressed exploiting the polarization dependence of the cross section. April 2003 Aura Rosca DESY-Zeuthen 6 TESLA - The TEV-Energy Superconducting Linear Accelerator The Background 2 mq 12πα Q β dσ (J 0) (1 β ) dcosθ s (1 β cos θ) s γγ 2 LO z 4 q 2 4 2 γγ 12πα2 Q q4β 3 dσLO (J z 2) 2 2 2 (1 cos θ )(2 β (1 cos θ)) 2 2 2 dcosθ s γγ (1 β cos θ) β 1 4m2q /s γγ σ Qq4 , • σ(γγ cc) σ(γγ bb) Need b-tag to reduce σ(J z 0) mq2 s γγ cc bkg. γγ bb(g) Need to take into account the NLO corrections! in respect t o σ(J z 2) Photons of the same helicity April 2003 • Suppression removed for Aura Rosca suppress continuum DESY-Zeuthen bb. 7 TESLA - The TEV-Energy Superconducting Linear Accelerator Background Cross Sections • NLO cross sections include: – Exact one-loop QCD corrections (Jikia, Tkabladze) – Non-Sudakov form factors (Melles, Stirling, Khoze) April 2003 Aura Rosca DESY-Zeuthen 8 TESLA - The TEV-Energy Superconducting Linear Accelerator Simulation • Results include realistic photon spectrum for ++ and +- helicities simulated with Circe 2.0; • Signal MC generated with Pythia and passed through the TESLA fast simulation, Simdet 4.02; • Background MC generated with Pythia and passed through the TESLA fast simulation: – s γγ 80 GeV – Convolution with the realistic photon spectrum for ++ and +helicities – Events weighted by the NLO Xsec for ++ and +- helicities • B-tagging April 2003 Aura Rosca DESY-Zeuthen 9 TESLA - The TEV-Energy Superconducting Linear Accelerator Cross Sections s γγ 80 GeV Cross section (pb) Number of expected ev. Number of generated ev. Signal process eff , L 80fb 1 0.25 ~20 000 50 000 Background (from Pythia) 0.75 44 175.0 (L J0 58.9fb 1 ) 600 000 h bb b b (g) J=0 b b (g) 4.79 102 314.4 (L J2 21.1fb 1 ) 600 000 cc (g) 13.4 789 260.0 600 000 cc (g) 85.1 1 817 734.0 600 000 J=2 J=0 J=2 April 2003 Aura Rosca DESY-Zeuthen 10 TESLA - The TEV-Energy Superconducting Linear Accelerator Selection Requirements • Isotropic angular distributions for signal and forward peaked for the background: • cosθT 0.7 • Jet clustering using Durham with y=0.02; N jet 2,3 • Other cuts on E vis 95 GeV, E long/E vis 0.1 April 2003 Aura Rosca DESY-Zeuthen 11 TESLA - The TEV-Energy Superconducting Linear Accelerator B-tagging Performance e e Z qq, s ee 91.2 GeV bb cc Events containing at least one jet with two reconstructed vertices: April 2003 Aura Rosca NNout 0.95 ε bb 70 % DESY-Zeuthen purity 98% 12 TESLA - The TEV-Energy Superconducting Linear Accelerator Invariant Mass Spectrum • It is possible to isolate the signal from the background. N sig 6018 events N bkg 7111 events April 2003 Aura Rosca DESY-Zeuthen 13 TESLA - The TEV-Energy Superconducting Linear Accelerator Partial Width Uncertainty Δ Γ(h γγ )BR(h bb Γ(h γγ )BR(h bb) N obs N obs N b 1.9% • This is one of the main justifications for a Photon Collider. April 2003 Aura Rosca DESY-Zeuthen 14 TESLA - The TEV-Energy Superconducting Linear Accelerator Summary • Measure Γ(h γγ) BR(h bb) with a precision of 1.9% by: – Taking into account the QCD radiative corrections to the background process γγ qq (Pythia + NLO Xsec.) through a reweighting procedure; – Adopting a b-quark tagging algorithm based on a neural network. April 2003 Aura Rosca DESY-Zeuthen 15 TESLA - The TEV-Energy Superconducting Linear Accelerator Summary • Measure Γ(h γγ) BR(h bb) with a precision of 1.9% by: – Taking into account the QCD radiative corrections to the background γγ + qqNLO process (Pythia Xsec.) through a reweighting procedure; – Adopting a b-quark tagging algorithm based on a neural network. N sig 6018 events N bkg 7111 events April 2003 Aura Rosca DESY-Zeuthen 16