Qweak Overview and Target Status Silviu Covrig Hall C for the Qweak Collaboration Hall C Users Meeting January 23, 2010
Download ReportTranscript Qweak Overview and Target Status Silviu Covrig Hall C for the Qweak Collaboration Hall C Users Meeting January 23, 2010
Qweak Overview and Target Status Silviu Covrig Hall C for the Qweak Collaboration Hall C Users Meeting January 23, 2010 Why Measure Qweak(p) • Qw(p) is a fundamental property of the proton, never before measured • Being suppressed in the SM a 4% measurement may provide a window into parity violating physics at the TeV energy scale, complementing colliders • It is a standalone precision determination of the Weinberg angle at low Q2 • For a useful check of the running of sin2qw it’s relative uncertainty has to be <1% Q 1 4 sin q p W gU(1) 2 W qW gSU(2) Hall C Users Meeting, January 23, 2010 sin2θW in the MS Renormalization Scheme Experiment d(sin2qw) sin2qw 133Cs 0.0046 E158 0.0054 Qweak 0.0030 MOLLER 0.0010 MZ 0.0006 Theory Q2 ~ 0 0.00086 Hall C Users Meeting, January 23, 2010 Parity Violation Asymmetry e- k k h+ θ e- target d d M APV 2 NC d d M Q2,θ 0 where Q ( M ) (1 4 sin q ) 0.072 p W 2 Z W For Qweak optimum Q2 ~ 0.03 (GeV/c)2 APV AQ p Ahadronic Aaxial W (190 90 10 ) ppb Hall C Users Meeting, January 23, 2010 k k h- θ target GF Q 2 QWp Q 2 B(Q 2 ) 4 2 Hadronic form factor correction: from G0, SAMPLE, Happexx, PV-A4 Basic Qweak Parameters Parameter Value Beam Energy Polarization Current 1.165 GeV 85% 150-180 A LH2 Target Production Running Time Acceptance: q, j, DW 35 cm, 2500 W 2544 hours 8⁰ ± 3⁰, , 37 msr Acceptance Averaged Q2 Acceptance Averaged Physics Asymmetry Acceptance Averaged Expt'l Asymmetry < Q2 > = 0.026 (GeV/c)2 < A > = -0.234 ppm < A > = -0.200 ppm Integrated Cross Section Integrated Rate (all sectors) Hall C Users Meeting, January 23, 2010 4.0 b 6.5 GHz (.81 GHz / sector) 5 The Qweak Experiment APV ≈ -200 ppb, DAPV ≈ 5 ppb Contribution to Contribution to DA / A DQ / Q Counting statistics 2.1% 3.2% Hadronic structure - 1.5% Beam polarimetry 1.0% 1.5% Absolute Q2 0.5% 1.0% Backgrounds 0.5% 0.7% Helicitycorrelated beam properties 0.5% 0.7% TOTAL: 2.5% 4.1% Source of error phys phys Hall C Users Meeting, January 23, 2010 p p W W Beam Properties • • • • • DI/I < 0.1 ppm Position < 2 nm Angle < 30 nrad Diameter < 0.7 m Energy DE/E < 10-9 Gzero HAPPEX 2 TRIUMF E497 SLAC E158 Qweak 500 ppb 130 ppb 35 ppb 17 ppb 5 ppb 6 The Qweak Apparatus Hall C Users Meeting, January 23, 2010 7 Qweak Magnet: QTOR • Toroidal magnet with 8 resistive coils • 4.3 m long / 1.5 m wide / ~3300 kg/coil • B d 0.89 Tm 9500 Amps 1.2 MW water cooled Power Supply Hall C Users Meeting, January 23, 2010 8 Qweak Detectors • Main Detectors – All 8 bars assembled in their light tight boxes – Remaining parts (exoskeleton & support frames) are built – 1st bars ready to install late Feb • Tracking System Region I = GEMs Region II = HDC Region III = VDC Both built 4+1 built 4 built Hall C Users Meeting, January 23, 2010 New Hall-C Compton Polarimeter Electron detector q D=0 .5 2 m D1 D4 Q1 1 m2 m D2 Q2 1 .5 m D3 9 .5 m • Compton Polarimeter can run all the time • Photon and electron coincidences greatly reduce systematic uncertainties due to backgrounds. • < 1% precision is possible by cross-calibrating with existing Møller polarimeter. • Hall C Møller <1% precision, but needs dedicated low current runs Hall C Users Meeting, January 23, 2010 Photon Detector Qweak Target Design First LH2 target at JLab designed with Computational Fluid Dynamics (CFD) – FLUENT Cryogenic Loop Highlights • 54 liters, 2500 W • LH2 centrifugal pump: 15 l/s (1 kg/s) flow @ <1.5 psid • Hybrid heat exchanger: 27 l, both 4 K and 15 K He coolant • High power heater: 2500 W • Cell • 35 cm long in beam, 7.8 liters conical cell • LH2 flows transversely to the beam axis @ <v> ~ 2.9 m/s • Steady-state uniform heating (Δρ/ρ)BV ~ 0.7%, transient rastered heating ~ 1.1% Hall C Users Meeting, January 23, 2010 LH2 Target Systematics for Parity Violation fh A ex p APV measured in helicity pairs + - + - + - … 2Th N N N N 1 1 f h N 0 N 0 2 N 0 2 R Counting statistics 02 Target density fluctuations r = 5% 10% longer running A2 02 b2 (1 r )2 02 Target density reduction 10% @Irun 10% longer running exp N 10 N 180 (% / A) I N 10 Qweak fh σ0 (ppm) σb (ppm) r = 0.05 30 Hz 48 15 250 Hz 139 45 Hall C Users Meeting, January 23, 2010 The Qweak Target CAD model Cryogenic loop during assembly Centrifugal pump 30 Hz, 15 l/s, 1.5 psi Hybrid Heat Exchanger 2500 W Cell Block Hall C Users Meeting, January 23, 2010 13 Flow Pattern e- beam 8⁰±3⁰ Acceptance Δpcell = 0.262 psid @ 1 kg/s mass rate Hall C Users Meeting, January 23, 2010 14 Density Reduction Δρ/ρ (%) e- beam Boiling LH2 flow Heating 180 μA: LH2 245 W/cm3 Al 3950 W/cm3 7.5 liters 68 cm Hall C Users Meeting, January 23, 2010 15 Qweak Target Safety 4 kg of LH2 in 2 metal boundaries Safety incidents: • Relief (Sudden Loss of Vacuum): 105g/s • Vent (cryo-loop breaks), with fluent: 210 g/s Δp = 1 atm (ø pipe>2”) Δp < 1 atm (ø pipe>4”) • Release: hydrogen escapes into Hall C – ODH: none – Flammability: possible (556 MJ from burning 4 kg of hydrogen) Hydrogen concentration in normal air Hall C Users Meeting, January 23, 2010 4 < cV <74 % : deflagration Sub-sonic waves 18< cV < 54 % : detonation Shock Waves 16 17 Case Study: Rastered Beam Heating Heating densities: same as Qweak cell Beam Direction Raster fx = 24960 Hz fy = 25080 Hz Transient simulation in fluent with ts = 2.25 μs Hall C Users Meeting, January 23, 2010 18 19 Schedule Highlights • Installation period Nov 2009 – May 2010 • Readiness Review July 20, 2009 • Target Safety and Design Review Sep 4, 2009 (Passed) • Commissioning May 25, 2010 – July 22, 2010 • First Run Sep 06, 2010 – May 02, 2011 • Second Run Nov 07, 2011 – May 14, 2012 Hall C Users Meeting, January 23, 2010 The Qweak Collaboration (Funded by DOE, NSF, NSERC and the State of Va) D. Androic, D. Armstrong, A. Asaturyan, T. Averett, R. Beminiwattha, J. Benesch, J. Birchall, P. Bosted, C. Capuano, R. D. Carlini1 (Principal Investigator), G. Cates, S. Covrig, M Dalton, C. A. Davis, W. Deconinck, K. Dow, J. Dunne, D. Dutta, R. Ent, J. Erler, W. Falk, H. Fenker, J.M. Finn, T. A. Forest, W. Franklin, M. Furic, D. Gaskell, M. Gericke, J. Grames, K. Grimm, D. Higinbotham, M. Holtrop, J.R. Hoskins, K. Johnston, E. Ihloff, M. Jones, R. Jones, K. Joo, J. Kelsey, C. Keppel, M. Khol, P. King, E. Korkmaz, S. Kowalski1, J. Leacock, J.P. Leckey, J. H. Lee, L. Lee, A. Lung, S. MacEwan, D. Mack, R. Mahurin, J. Mammei, J. Martin, D. Meekins, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, K. E. Myers, A. Narayan, Nuruzzaman, A. K. Opper, S. A. Page1, J. Pan, K. Paschke, S. Phillips, M. Pitt, B. (Matt) Poelker, Y. Prok, W. D. Ramsay, M. Ramsey-Musolf, J. Roche, B. Sawatzky, N. Simicevic, G. Smith2, T. Smith, P. Solvignon, P. Souder, D. Spayde, R. Suleiman, E. Tsentalovich, W.T.H. van Oers, B. Waidyawansa, W. Vulcan, D. Wang, P. Wang, S. Wells, S. A. Wood, S. Yang, R. Young, X. Zheng, C. Zorn 1Spokespersons 2Project Manager College of William and Mary, University of Connecticut, Instituto de Fisica, Universidad Nacional Autonoma de Mexico, University of Wisconsin, Hendrix College, Louisiana Tech University, University of Manitoba, Massachusetts Institute of Technology, Thomas Jefferson National Accelerator Facility, Virginia Polytechnic Institute & State University, TRIUMF, University of New Hampshire, Yerevan Physics Institute, Mississippi State University, University of Northern British Columbia, Ohio University, Hampton University, University of Winnipeg, University of Virginia, George Washington University, Syracuse University, Idaho State University, University of Connecticut, Christopher Newport University, University of Zagreb Hall C Users Meeting, January 23, 2010 21 Low Energy Weak Neutral Current Standard Model Tests E158 : δ(sin2 qW ) ~ 0.54% sin2 q W 0.2397 0.0010 0.0008 MOLLER: δ(sin2 qW ) ~ 0.1% QWe (1 4 sin2 q W ) QWA N Z (1 4 sin2 qW ) N QWp 1 4 sin 2 q W QWCs 72.06 0.28 0.34 Qweak : δ(sin2 qW ) ~ 0.3% APV 133Cs : δ(sin2 qW ) ~ 0.83% Hall C Users Meeting, January 23, 2010 22 23