A Weighted-Tree Similarity Algorithm for Multi-Agent Systems in e-Business Environments Virendra C.Bhavsar* Harold Boley** Lu Yang* *Faculty of Computer Science, Univ.
Download ReportTranscript A Weighted-Tree Similarity Algorithm for Multi-Agent Systems in e-Business Environments Virendra C.Bhavsar* Harold Boley** Lu Yang* *Faculty of Computer Science, Univ.
A Weighted-Tree Similarity Algorithm for Multi-Agent Systems in e-Business Environments 1 Virendra C.Bhavsar* Harold Boley** Lu Yang* *Faculty of Computer Science, Univ. of New Brunswick, Fredericton **Institute for Information Technology – e-Business, NRC, Fredericton Outline 2 Introduction Multi-agent system architecture Tree representation Similarity of trees Experimental results Conclusion Introduction e-business, e-learning. Semantic Web and Web Services. – Virtual marketplace. – Buyer-seller message exchange. Semantic match-making in multiagent systems. – 3 Keywords/keyphrases. Multi-agent system architecture Main User Info Agents … User Profiles User Agents … … User Web Browser Server To other sites (network) …CafeCafe-1 n Cafe-n 4 Agent-based Community Oriented Routing Network (ACORN) Tree representation Why tree representation? – – Flexibly represent complex structures. Why arc-labelled, arc-weighted tree? Car Car Make Year 0.5 0.3 Model 0.2 Ford 5 Explorer 2002 Ford Explorer 2002 Matchmaking of agents Match-making in the Cafe. Leaner 1 Course 1 Leaner 2 . . . Course 2 . . . Cafe Course m Leaner n Programming in Java Programming in Java Tuition Credit Duration 0.4 0.2 0.1 Textbook 0.3 3 6 2 months Thinking $1200 in Java Tuition Credit Duration 0.4 0.2 0.1 Textbook 0.3 3 2 months Introduction $1500 to Java Tree representation - lexicographic order The arcs are labelled in lexicographic (alphabetical) order. Hotel Car Make 0.5 0.5 Beds 0.5 Model Queen 0.2 7 Location Year 0.3 Ford Capacity Explorer 0.8 2002 A tree describing “Car”. 100 Fredericton Downtown Single 0.9 0.2 150 Lincoln Hotel A tree describing “Hotel”. Uptown 0.1 Sheraton Hotel Tree representation - depth and breadth The depth and breadth of any subtree are not limited. Jobbank Newpost 0.9 Oldpost 0.1 IT Hardware 0.2 … Java 0.5 Education Software 0.8 Advanced 0.4 Preliminary School Position … Oracle College High 0.4 University Certificate 0.1 School 0.5 0.5 Programmer 8 0.6 DBA Seneca Liverpool UNB College High School A tree that describes “Jobbank”. Serialization of trees – Weighted Object-Oriented RuleML. – XML attributes for arc labels and weights. cterm[ -opc[ctor[car]], <cterm> -r[n[make],w[0.3]][ind[ford]], <_opc><ctor>Car</ctor></_opc> -r[n[model],w[0.2]][ind[explorer], <_r n=“Make” w=“0.3”><ind>Ford</ind></_r> -r[n[year],w[0.5]][ind[1999]] <_r n=“Model” w=“0.2”><ind>Explorer</ind></_r> ] <_r n=“Year” w=“0.5”><ind>1999</ind></_r> </cterm> Tree serialization in OO RuleML. 9 Tree representation in Relfun. Similarity of trees – simple trees tree t Make 0.3 Ford 10 tree t´ Car 1 Year 0.7 2002 Car (House) Year 0.7 Make 0.3 1999 Ford 0 Similarity of trees – complex trees tree t´ vehicle tree t summer autumn 0.5 0.5 auto auto make year make year 0.3334 0.3333 0.3334 model 0.3333 model ford big 0.5 e-series wagon 11 ford 1999 mini big 0.5 0.3333 free star van 2000 mini 0.5 0.5 montery free star si(wi + w'i)/2 0.5 auto auto make year make year 0.3334 0.3333 0.3334 model 0.3333 model 0.3333 van summer autumn 0.5 0.3333 vehicle ford big 0.5 e-series wagon 0.3333 van 1999 mini ford truck 2001 0.5 free star A(si)(wi + w'i)/2 A(si) = si A(si) = si . Algorithm for tree similarity 12 Three main recursive functions of the algorithm. – Treesim(t,t'): Recursively compares any (unordered) pair of trees. – Treemap(l,l'): Co-recursively maps two lists, l and l', of labelled and weighted arcs: descends into identical–labelled subtrees. – Treeplicity(i,t): Decreases the similarity with decreasing simplicity. Experimental results –simple trees Experiments Tree make 1 auto year 0.5 0.5 ford t1 auto 1.0 0.0 ford 2 2002 t1 auto year make 0.0 ford 13 2002 year make 1.0 t3 Results Tree 2002 make auto year 0.5 0.5 0.1 chrysler t2 1998 auto make year 1.0 ford make 0.0 t2 auto 1.0 ford 1998 year 0.0 t4 0.5 2002 1.0 Experimental results – simple trees (cont’d) Experiments Tree Tree auto auto model 1.0 3 mustang ford explorer 2000 t1 t2 auto auto model 1.0 14 year make 0.45 model 0.45 0.1 year make model 0.05 0.05 0.9 mustang ford explorer 2000 t3 t4 Results 0.2823 0.1203 Experimental results – identical tree structures Experiments 4 Tree Tree auto auto yea make 0.3 model r 0.5 0.2 make model year 0.3 0.2 0.5 ford explorer 2002 ford explorer 1999 t1 t2 auto auto make year make model yea model 0.3334 0.3333 r0.3333 0.3334 0.3333 0.3333 15 ford explorer 2002 ford explorer 1999 t3 t4 Results 0.55 0.7000 Experimental results – progressively complex trees Experiments Tree Tree Results auto t2 make 1.0 auto 5 ford auto t3 model 0.5 make 0.5 t1 ford t4 0.3025 explorer auto year make model 0.5 0.3 0.2 ford explorer 2002 16 0.3025 0.3025 Experimental results – complex trees Tree Experiments vehicle autumn 0.5 0.3333 ford van 1999 2000 mini big mini e-series free wagon star 0.5 0.5 auto auto make make year 0.3334 year 0.3334 0.3333 model 0.3333 model 0.5 e-series free wagon star tree t1 ford big 0.5 e-series wagon 0.5950 0.3333 0.3333 van 0.5 summer 0.5 auto auto make year year make 0.3334 0.3333 0.3334 model model 0.3333 ford big 17 autumn 0.5 0.3333 si vehicle summer 0.5 6 Si Tree ford van 1999 van 2001 mini 0.5 free star tree t2 0.7611 Experimental results – complex trees (cont’d) Experiments Tree vehicle autumn summer 0.5 0.5 1.0 auto make year 0.3334 model 0.3333 auto 0.3334 ford van make 0.3334 0.3333 model 2000 year 0.3333 0.3333 0.3333 ford tree t1 model 0.5894 auto year make 0.3333 18 si vehicle summer 7 Si Tree van 1994 ford van tree t2 0.6816 2001 Conclusion 19 Tree representations – useful for e-Business, eLearning. Matchmaking in multiagent systems – a versatile tree similarity algorithm is proposed. Executable specification available in functional-logic language: Relfun. - A Java implementation is in progress. Future work - Clustering of agents. 20