Weak Mixing Angle and EIC Yingchuan Li INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep.
Download ReportTranscript Weak Mixing Angle and EIC Yingchuan Li INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep.
Weak Mixing Angle and EIC Yingchuan Li INT Workshop on Pertubative and Non-Pertubative Aspects of QCD at Collider Energies Sep. 17th 2010 2 BNL LDRD Electroweak Physics with an Electron-Ion Collider Deshpande, Kumar, Marciano, Vogelsang STUDY GOALS • DIS & Nuclear Structure Functions (,Z,W) (Beyond HERA) • ARL, sin2W(Q2), Radiative Corrections, “New Physics” • Lepton Flavor Violation: eg epX 3 Outline • Why is EW precision physics important? • The past, present, and future (EIC) of • Summary. sin W 2 4 Standard Model • SM of particle physics SU(3)C SU(2) L U (1)Y Higgs mechanism U (1) EM Strong sector: right and complete, hard to solve; EW sector: still not sure about how EW symmetry breaking happens 5 Scenarios of Higgs mechanism • Fundamental Higgs: hierarchy problem SUSY; Extra Dim; • Higgsless models; Technicolor; • Composite Higgs as a PGB; Georgi-Kaplan model; 6 To ping down the EW symmetry breaking • Direct search at high energy collider SM Higgs; SUSY particles; KK modes; other exotics; Major motivation for LHC! See talk by Del Duca on Wed. • Indirect searchs via precision tests Z-pole measurements; Low energy tests of neutral current; What can EIC do on this? 7 EW sector with SM Higgs • Three para. (g,g’,v) determine properties of EW gauge bosons Masses: M W EM coupling: ev ev ; MZ 2 sin W 2 sin W cosW e g sin W Charged current: g 2 2e2 1 GF 8MW2 sin 2 W 2v 2 g 2 ( T 2 Q sin W T3 5 ) 3 Neutral current: 2 cosW Higgs and top mass enters at loop level ! 8 EW precision tests: three best measured • Fine structure constant: 1 / 137.035999084 (51) Electron anomalous magnetic moment • Fermi constant: GF 1.166364(5) 105 GeV -2 Muon life time • Z boson mass: M Z 91.1876 0.0021GeV LEP 9 2 sin W The hunt for • Prediction within SM sin 2 W (M Z ) ms 4 2G M Z2 [1 r (M H )] • Z-pole experiment measurements: SLAC : sin 2 W ( M Z ) ms 0.23070(26) CERN : sin W ( M Z ) ms 0.23193(29) 2 WorldAverage: sin 2 W ( M Z ) ms 0.23125(16) 3 sigma difference! Correct? 10 The implications of sin 2 W • World average: sin 2 W (M Z )ms 0.23125(16) M H 8539 28 GeV; S 0.13(10) Consistent with LEP bound (MH>114 GeV) Suggestive for SUSY (MH<135 GeV) Rule out most technicolor models Satisfied and happy? 11 The implications of sin 2 W • SLAC result: sin 2 W (M Z )ms 0.23070(26) + mW=80.398(25) GeV 33 M H 3018 GeV; S 0.12 Ruled out by LEP bound (MH>114 GeV) • CERN result: Suggestive for SUSY sin 2 W (M Z )ms 0.23193(29) + mW=80.398(25) GeV 300 M H 450190 GeV; S 0.45 Consistent with LEP bound (MH>114 GeV) Suggestive for technicolor models Very different implication! We failed to nail weak mixing angle! 12 2 sin W Other evidence of • Low energy measurements probe 4-fermion interactions: - hardron: L,R -e: gV,e A e - hardron: C1u , 2u ,1d , 2 d e-e: C2 e 13 Other evidence of sin 2 W : neutrino scattering • Neutrino-lepton elastic scattering: R e / e probe - e couplings: gV,e A CHARM II: sin 2 W (M Z ) 0.2324(84) ms • Neutrino-nucleon DIS: NC NC N N Paschos-Wolfenstein ratio R CC N CC N probe - hardron couplings: L,R (u, d ) NuTeV: sin 2 W (M Z )ms 0.236(2) Rad. Corr.? Nuclear charge symmetry breaking? 14 Other evidence of sin 2 W : Atomic PV • Weak charge: QW (Z , N ) PV (Z (1 4 PV sin 2 W ) N ) SM: QW (Cs) SM 73.19(3) 1990: QW (Cs)exp. 71.04(1.38)(0.88) 1999: QW (Cs)exp. 72.06(28)(34) 2008: QW (Cs)exp. 72.69(28)(39) 2009: QW (Cs)exp. 73.16(28)(20) sin 2 W (M Z )ms 0.2312(16) Consistent with Z pole measurement! 15 Other evidence of sin 2 W : Moller scattering • E158 at SLAC: Pol. Electron (E=50 GeV) on fixed target: Q 0.02 GeV 2 2 Meaure ALR to 12%, extract sin 2 W to 0.6% sin 2 W (M Z )ms 0.2329(13) Establish the running of mixing angle (together with APV) to 6 sigma. 16 17 Future effort to nail sin W 2 • QWEAK exp. At JLAB: ep • Polarized Moller at JLAB: ee ep; ee; • Polarized eD (fixed target) DIS at JLAB (6 & 12 GeV); • Polarized ep & eD collider; Goal: 0.1% accuracy 18 Future effort: QWEAK & Moller • QWEAK at JLAB: Electron (E=1.1 GeV) on fixed target: Q 0.03 GeV 2 2 Polarized electron beam: Pe 0.80 1% Meaure ALR (ep) to 4%, extract sin 2 W to 0.3% • Moller at JLAB: Electron on fixed target after 12 GeV upgrade; MeasureALR (ee ee) to 2.5%, extract sin 2 W to 0.1% 19 0.250 2 sin ^ W ( 0.240 AFB(lep) [Tevatron] Moller [SLAC] -DIS APV(Cs) 0.235 sc re en ing Moller [JLab] Qweak [JLab] 0.230 0.225 PV-DIS [JLab] ant iscr een ing 0.245 SM current future ALR(had) [SLC] AFB(b) [LEP] 0.0010.010.11101001000 [ GeV] Plot taken from proposal for JLAB Moller scattering 20 Future effort: eD DIS • eD (fixed target) DIS: Advantage: extract C2u,2d e ALR (eD eX ) Q2[(C1u C1d / 2) f ( y)(C2u C2d / 2)] High luminosity: 1038 cm-2 sec-1 • eD(p) collision DIS: Larger asymmetry at higher Q-square; A Q2 , N 1/ Q2 , A2 N Q2 Lower luminosity (1033,34,35 cm-2 sec-1 ); Both electron and deuteron (proton) are polarized; 21 E-Ion collider: double asymmetry RR RL LR LL Pe RR RL LR LL RR RL LR LL p,D Pp , D • Polarized p or D: ALR RR RL LR LL RR LL ep A Peff . • Both e & p (D) polarized: LLRR RR LL e • Polarized e: ALR Effective polarization: Peff . Pe Pp 1 Pe Pp Pe 0.85, Pp 0.70 Peff . 0.972 Peff . / Peff . 0.17Pe / Pe 0.08Pe / Pe Larger! Smaller! Pe 0.85 0.004, Pp 0.70 0.014 Peff . 0.972 0.0018 22 Summary • Precision tests are very important in revealing the physics behind EW symmetry breaking among other things. 2 • The most precise (0.1%) measurement at Z pole of sin W still has 3 sigma difference. • Another future measurement of sin 2 W with 0.1% precision is demanded. • The EIC may add new twist to it! Thank you !!!