EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L.
Download
Report
Transcript EE 5340 Semiconductor Device Theory Lecture 18 – Spring 2011 Professor Ronald L.
EE 5340
Semiconductor Device Theory
Lecture 18 – Spring 2011
Professor Ronald L. Carter
[email protected]
http://www.uta.edu/ronc
Test 2 – Tuesday 05Apr11
•
•
•
•
•
•
11 AM Room 129 ERB
Covering Lectures 11 to19
Open book - 1 legal text or ref., only.
You may write notes in your book.
Calculator allowed
A cover sheet will be included with
full instructions. For examples see
http://www.uta.edu/ronc/5340/tests/.
©rlc L18-29Mar2011
2
©rlc L18-29Mar2011
3
©rlc L18-29Mar2011
4
Ideal diode equation
for EgN = EgN
Js = Js,p + Js,n = hole curr + ele curr
Js,p = qni2Dp coth(Wn/Lp)/(NdLp), [cath.]
= qni2Dp/(NdWn), Wn << Lp, “short”
= qni2Dp/(NdLp), Wn >> Lp, “long”
Js,n = qni2Dn coth(Wp/Ln)/(NaLn), [anode]
= qni2Dn/(NaWp), Wp << Ln, “short”
= qni2Dn/(NaLn), Wp >> Ln, “long”
Js,n<<Js,p when Na>>Nd , Wn & Wp cnr wdth
©rlc L18-29Mar2011
5
Ideal diode equation
for heterojunction
• Js = Js,p + Js,n = hole curr + ele curr
Js,p = qniN2Dp/[NdLptanh(WN/Lp)], [cath.]
= qniN2Dp/[NdWN], WN << Lp, “short”
= qniN2Dp/(NdLp), WN >> Lp, “long”
Js,n = qniP2Dn/[NaLntanh(WP/Ln)], [anode]
= qniP2Dn/(NaWp), Wp << Ln, “short”
= qniP2Dn/(NaLn), Wp >> Ln, “long”
Js,p/Js,n ~ niN2/niP2 ~ exp[[EgP-EgN]/kT]
©rlc L18-29Mar2011
6
Bipolar junction
transistor (BJT)
• The BJT is a “Si
sandwich”
Pnp (P=p+,p=p-) or
Npn (N=n+, n=n-)
• BJT action: npn
Forward Active
when VBE > 0 and
VBC < 0
©rlc L18-29Mar2011
E
B
P
n
VEB
C
p
VCB
Depletion Region
Charge neutral Region
7
npn BJT topology
IE
x’
IC
IB
x’E
0
0
xB
0
-WE
N-Emitter p-Base
Depletion
Region
©rlc L18-29Mar2011
x
0
WB
x”c
x”
z
WB+WC
n-Collector
Charge Neutral
Region
8
BJT boundary and
injection cond (npn)
2
ni
VBE
, pnE 0
pnE 0 exp f
pnE
x' 0
NE
Vt
0
pnE
x' xE
2
n
VBC
, pnC 0 i
pnC x" 0 pnC 0 exp f
NC
V
t
pnC x" x 0
C
©rlc L18-29Mar2011
9
BJT boundary and
injection cond (npn)
Note that the Base BC are inter dependent
2
n
VBE
, npB0 i
npB
npB0 exp f
NB
x 0
V
t
VBC
.
npB
npB0 exp f
x xB
Vt
©rlc L18-29Mar2011
10
IC npn BJT
(*Fig 9.2a)
©rlc L18-29Mar2011
11
npn BJT bands in FA region
q(VbiE-VBE )
qVBE
q(VbiC-VBC )
qVBC
injection
©rlc L18-29Mar2011
high field
12
Coordinate system - prototype npn
BJT (Fig 9.8*)
©rlc L18-29Mar2011
13
Notation for npn & pnp BJTs
•
•
•
•
NE, NB, NC
xE, xB, xC
DE, DB, DC
LE, LB, LC
E, B, and C doping (maj)
E, B, and C CNR widths
Dminority for E, B, and C
Lminority for E, B, and C
(L2min = Dmin tmin)
tE0, tB0, tC0 minority carrier lifetimes for E, B, and C regions
©rlc L18-29Mar2011
14
Notation for npn BJTs only
• pEO, nBO, pCO: E, B, and C thermal
equilibrium minority carrier conc
• pE(x’), nB(x), pC(x’’): positional mathematical function for the E, B, and C
total minority carrier concentrations
pE(x’), nB(x), pC(x’’): positional mathematical function for the excess
minority carriers in the E, B, and C
©rlc L18-29Mar2011
15
Notation for pnp BJTs only
• nEO, pBO, nCO: E, B, and C thermal
equilibrium minority carrier conc
• nE(x’), pB(x), nC (x’’): positional mathematical function for the E, B, and C
total minority carrier concentrations
nE(x’), pB(x), nC(x’’): positional mathematical function for the excess
minority carriers in the E, B, and C
©rlc L18-29Mar2011
16
npn BJT boundary conditions
VBE
E : pE x' xE 0, pE 0 pE 0 exp
1
Vt
VBE
B : nB x 0 nB0 exp
1 ,
Vt
ni2
VBC
nB xB nB0 exp
1 , nB0 , etc.
Vt
NB
VBC
C : pC x" 0 pC 0 exp
1 , pC xC 0
Vt
©rlc L18-29Mar2011
17
Emitter solution in npn BJT
2 pE x' pE x'
DE
0 , pE pE pE0
2
tE 0
x'
xE x"
VBE
pE0 exp
1 sinh
LE
Vt
pE x'
xE
sinh
LE
VBE xE x'
, xE LE
pE x' pE0 exp
1
Vt xE
©rlc L18-29Mar2011
18
Base solution in npn BJT
2 nB x nB x
0
,
n
n
n
B
B
B0
2
DB tB 0
x
VBE
nB x'
expf
xB
Vt
sinh
nB0
LB
VBC
expf
Vt
x
sinh
LB
VBE
nB0 expf
Vt
©rlc L18-29Mar2011
xB x
sinh
LB
and when x B LB
x
1
x B
VBC
expf
Vt
x
x B
19
Collector solution in npn BJT
2 pC x"
2
x"
pC x"
0 , pC pC pC0
DC tC 0
xC x"
VBC
pC0 exp
1 sinh
Vt
LC
pC x"
xC
sinh
LC
x"
pC x" pC0
, VBC Vt , xC LC
LC
©rlc L18-29Mar2011
20
Hyperbolic tangent function
2
y
e x / L e x / L
y
,
e
1y
...
x / L
x / L
2!
e
e
1 x 1 x
x
L
L
so if x L, tanh
L 1 x 1 x
L
L
x
tanh
L
lim
x x
giving,
tanh
x
L L
0
L
©rlc L18-29Mar2011
21
npn BJT regions of operation
VBC
Reverse
Active
Cutoff
©rlc L18-29Mar2011
Saturation
Forward
Active
VBE
22
npn FA BJT minority carrier
distribution (Fig 9.4*)
©rlc L18-29Mar2011
23
npn RA BJT minority carrier
distribution (Fig 9.11a*)
©rlc L18-29Mar2011
24
npn cutoff BJT min carrier
distribution (Fig 9.10a*)
©rlc L18-29Mar2011
25
npn sat BJT minority carrier
distribution (Fig 9.10b*)
©rlc L18-29Mar2011
26
npn BJT currents in the
forward active region ©RLC
JnE
JnC
JRB=JnE-JnC
IE =
-JEAE
IC =
JCAC
JGC
JpE
©rlc L18-29Mar2011
JRE
IB=-(IE+IC ) JpC
27
References
* Semiconductor Physics and Devices,
2nd ed., by Neamen, Irwin, Boston,
1997.
**Device Electronics for Integrated
Circuits, 2nd ed., by Muller and
Kamins, John Wiley, New York, 1986.
©rlc L18-29Mar2011
28