Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L.
Download ReportTranscript Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 22 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/ The npn Gummel-Poon Static Model C RC B RBB B’ ILC IBR ILE IBF ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB RE E ©rlc L2230Mar2011 2 Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L2230Mar2011 3 E-M model equations VBC VBE FIES exp f IC ICS exp f Vt Vt VBE VBC R ICS exp f IE IES exp f Vt Vt The reciprocit y relationsh ip gives IS 2 qni AEDB NBxB ©rlc L2230Mar2011 FIES IS R ICS qni2ACDB NBxB 4 Common emitter current gain, bF IC 0 b 0 , with IE IB IC ; b 0 , so b IB 1 0 1 xB2 2L2B 1 NBDE xB nixBE xB VBE b exp 2nBODB 0 2Vt NEDBxE Usually, a BJT is limited or T limited. NBDE xB xB2 nixBE xB VBE 2 , exp , lim. NEDBxE 2LB 2nBODB 0 2Vt xB2 NBDE xB 2 NEDBxE 2LB ©rlc L2230Mar2011 nixBE xB VBE , exp , T lim. 2Vt 2nBODB 0 5 Recombination/Gen Currents (FA) JRE qWBEni VBE exp , where WBE is the EB 2rec 2Vt 1 DR and rec is the recombinat ion rate. JGC qniWBC 2VbiC VBC , where WBC is the 2 gen qNeff,BC 1 CB DR and gen is the recombinat ion rate, and Neff,BC ©rlc L2230Mar2011 NBNC NB NC 6 npn Base-width mod. (Early Effect) Fig 9.15* n p n Jn qDn x Qj VBC CjC xB qNBA VBC J J xB xB J J xB VBC xB VBC ©rlc L2230Mar2011 7 Base-width modulation (Early Effect, cont.) I J xB A VCB xB VBC Fig 9.16* J CjC xB qNBA CjC I I VCE QB VCE VA ©rlc L2230Mar2011 8 Charge components in the BJT **From Getreau, Modeling the Bipolar Transistor, Tektronix, Inc. ©rlc L2230Mar2011 9 Gummel-Poon Static npn Circuit Model C RC B RBB B’ ILC IBR ILE IBF Intrinsic Transistor ICC - IEC = {IS/QB}* {exp(vBE/NFVt)-exp(vBC/NRVt)} RE ©rlc L2230Mar2011 E 10 Gummel-Poon Model General Form QXXXXXXX NC NB NE <NS> MNAME <AREA> <OFF> <IC=VBE, VCE> <TEMP=T> Netlist Examples Q5 11 26 4 Q2N3904 IC=0.6, 5.0 Q3 5 2 6 9 QNPN .67 NC, NB and NE are the collector, base and emitter nodes NS is the optional substrate node; if unspecified, the ground is used. MNAME is the model name, AREA is the area factor, and TEMP is the temperature at which this device operates, and overrides the specification in the Analog Options dialog. ©rlc L2230Mar2011 11 Gummel-Poon Static Model Gummel Poon Model Parameters (NPN/PNP) Adaptation of the integral charge control model of Gummel and Poon. Extends the original model to include effects at high bias levels. Simplifies to Ebers-Moll model when certain parameters not specified. Defined by parameters IS, BF, NF, ISE, IKF, NE determine forward characteristics IS, BR, NR, ISC, IKR, NC determine reverse characteristics VAF and VAR determine output conductance for for and rev RB(depends on iB), RC, and RE are also included ©rlc L2230Mar2011 12 Gummel-Poon Static Par. NAME PARAMETER IS transport saturation current BF ideal maximum forward beta NF forward current emission coef. VAF forward Early voltage ISE B-E leakage saturation current NE B-E leakage emission coefficient BR ideal maximum reverse beta NR reverse current emission coeff. VAR reverse Early voltage ISC B-C leakage saturation current NC B-C leakage emission coefficient EG energy gap (IS dep on T) XTI temperature exponent for IS ©rlc L2230Mar2011 UNIT A V A V A eV - DEFAULT 1.0e-16 100 1.0 infinite 0 1.5 1 1 infinite 0 2 1.11 3 13 Gummel-Poon Static Model Parameters NAME PARAMETER UNIT IKF corner for forward beta A high current roll-off IKR corner for reverse beta A high current roll-off RB zero bias base resistance W IRB current where base resistance A falls halfway to its min value RBM minimum base resistance W at high currents RE emitter resistance W RC collector resistance W TNOM parameter - meas. temperature °C ©rlc L2230Mar2011 DEFAULT infinite infinite 0 infinite RB 0 0 27 14 Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L2230Mar2011 15 Gummel Poon npn Model Equations IBF = IS expf(vBE/NFVt)/BF ILE = ISE expf(vBE/NEVt) IBR = IS expf(vBC/NRVt)/BR ILC = ISC expf(vBC/NCVt) ICC - IEC = IS(exp(vBE/NFVt exp(vBC/NRVt)/QB QB = {½ +[¼ +(BF IBF/IKF + BR IBR/IKR)]1/2 } (1 - vBC/VAF - vBE/VAR )-1 ©rlc L2230Mar2011 16 Gummel Poon Base Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) z= [1+144iB/(p2IRB)]1/2-1 (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on slide 23, RBB = Rbmin + Rbmax/(1 + iB/IRB)RB ©rlc L2230Mar2011 17 Gummel Poon Base Resistance If IRB = 0, RBB = RBM+(RB-RBM)/QB If IRB > 0 RB = RBM + 3(RB-RBM)(tan(z)-z)/(ztan2(z)) z= [1+144iB/(p2IRB)]1/2-1 (24/p2)(iB/IRB)1/2 Regarding (i) RBB and (x) RTh on previous slide, RBB = Rbmin + Rbmax/(1 + iB/IRB)RB ©rlc L2230Mar2011 18 Making a diode from the GP BJT model C RC B RBB B’ ILC IBR ILE IBF ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB RE E ©rlc L2230Mar2011 19 Making a complete diode with G-P BJT • RB = RC = 0 • Set RE to the desired RS value • Set ILE and NE to ISR and NR so this is the rec. current • Set BR=BF>>1, ~1e8 so IBR, IBF are neglibigle ©rlc L2230Mar2011 • Set ISC = 0 so ILC is = 0 • Set IS to IS for diode so ICC-IEC is the injection curr. • Set VAR = VAF = 0 • IKF gives the desired high level injection, set IKR = 0 20 BJT Characterization Forward Gummel vBCx= 0 = vBC + iBRB - iCRC iC vBEx = vBE +iBRB +(iB+iC)RE iB = IBF + ILE = ISexpf(vBE/NFVt)/BF + ISEexpf(vBE/NEVt) iC = bFIBF/QB = ISexpf(vBE/NFVt)/QB ©rlc L2230Mar2011 iB + vBEx - RB RC vBC + + vBE RE 21 BJT I (A) vs. Vbe (V) for the G-P model Forward Gummel configuration (Vbcx=0) 1.E-02 1.E-03 1.E-04 1.E-05 Ideal F-G Data 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 Ic 1.E-13 Ib 1.E-14 1.E-15 1.E-16 0.0 ©rlc L2230Mar2011 0.2 0.4 0.6 0.8 iC and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec 22 BJT Characterization Reverse Gummel vBEx= 0 = vBE + iBRB - iERE vBCx = vBC +iBRB +(iB+iE)RC iB = IBR + ILC = ISexpf(vBC/NRVt)/BR + ISCexpf(vBC/NCVt) iE = bRIBR/QB = ISexpf(vBC/NRVt)/QB ©rlc L2230Mar2011 vBCx + RC iB RB iE vBC + + vBE RE 23 BJT I (A) vs. Vbe (V) for the G-P model Forward Gummel configuration (Vbcx=0) 1.E-02 1.E-03 1.E-04 1.E-05 Ideal R-G Data 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10 1.E-11 1.E-12 Ic Ie 1.E-13 Ib 1.E-14 1.E-15 1.E-16 0.0 ©rlc L2230Mar2011 0.2 0.4 0.6 0.8 iE and iB (A) vs. vBE (V) N = 1 1/slope = 59.5 mV/dec N = 2 1/slope = 119 mV/dec 24 Distributed resistance in a planar BJT coll. base & emitter contact regions reg 1 reg 2 reg 3 reg 4 emitter base collector • The base current • Each region of the must flow lateral to base adds a term the wafer surface of lateral res. • Assume E & C cur• vBE diminishes as rents perpendicular current flows ©rlc L2225 30Mar2011 Simulation of 2dim. current flow Q VCC DV iB1 = iB R Q1 • Distributed device is repr. by Q1, Q2, … Qn • Area of Q is same as the total area of the distributed device. • Both devices have the same vCE = VCC ©rlc L2230Mar2011 R Q2 R Qn • Both sources have same current iB1 = iB. • The effective value of the 2-dim. base resistance is Rbb’(iB) = DV/iB = RBBTh 26 Analytical solution for distributed Rbb diB x vBE JS L exp dx NFVt vBE JSE L exp NEVt dvBE x rBi iB x dx L • Analytical solution and SPICE simulation both fit RBB = Rbmin + Rbmax/(1 + iB/IRB)RB ©rlc L2230Mar2011 27 Distributed base resistance function RBBTh = RBM + DR/(1+iB/IRB)RB (DR = RB - RBM ) Normalized base resistance vs. current. (i) RBB/RBmax, (ii) RBBSPICE/RBmax, after fitting RBB and RBBSPICE to RBBTh (x) RBBTh/RBmax. FromAn Accurate Mathematical Model for the Intrinsic Base Resistance of Bipolar Transistors, by Ciubotaru and Carter, Sol.St.Electr. 41, pp. 655-658, 1997. ©rlc L2230Mar2011 28 References 1 2 OrCAD PSpice A/D Manual, Version 9.1, November, 1999, OrCAD, Inc. Semiconductor Device Modeling with SPICE, 2nd ed., by Massobrio and Antognetti, McGraw Hill, NY, 1993. * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. ** Modeling the Bipolar Transistor, by Ian Getreau, Tektronix, Inc., (out of print). ©rlc L2230Mar2011 29