Overview Class #8 (Tues, Feb 10) • • • • • Deformation in Graphics Assignments due today. “5 late days” rule. Hand-in procedures... AFS disk space: – /afs/cs.cmu.edu/academic/class/15863-s03 – alla/ cdtwigg/ dmowatt/ ids/ kayvonf/
Download ReportTranscript Overview Class #8 (Tues, Feb 10) • • • • • Deformation in Graphics Assignments due today. “5 late days” rule. Hand-in procedures... AFS disk space: – /afs/cs.cmu.edu/academic/class/15863-s03 – alla/ cdtwigg/ dmowatt/ ids/ kayvonf/
Overview Class #8 (Tues, Feb 10) • • • • • Deformation in Graphics Assignments due today. “5 late days” rule. Hand-in procedures... AFS disk space: – /afs/cs.cmu.edu/academic/class/15863-s03 – alla/ cdtwigg/ dmowatt/ ids/ kayvonf/ mig/ mmt/ rmelamud/ sriramv/ barbic/ djames/ gbr/ jongchul/ mbz/ mmandel/ mwh/ rywang/ Deformation in Graphics • Long history in graphics • Two classes of deformation – Purely geometric deformation – Physically based deformation • Both are extremely important in practice • Why? – Goals, realism, animator control, ... • Deformation basis, u=Uq – Local vs global bases related to sparsity of U and (often) formulation stiffness of time-stepping Geometric Deformation Alan H. Barr, Global and Local Deformations of Solid Primitives, Computer Graphics (Proceedings of SIGGRAPH 84). 18(3), pp. 21-30, 1984. • Introduced hierarchical transformation of surfaces • Local/tangent transformation matrices (Jacobians) • Locally specified deformation • Blending of fundamental deformations: twisting, bending, tapering, ... • Now mainstream Thomas W. Sederberg, Scott R. Parry, Free-Form Deformation of Solid Geometric Models, Computer Graphics (Proceedings of SIGGRAPH 86). 20(4), pp. 151-160, 1986. Sabine Coquillart, Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling,Computer Graphics (Proceedings of SIGGRAPH 90). 24(4), pp. 187-196, 1990. Sabine Coquillart, Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling,Computer Graphics (Proceedings of SIGGRAPH 90). 24(4), pp. 187-196, 1990. William M. Hsu, John F. Hughes, Henry Kaufman, Direct manipulation of free-form deformations, Computer Graphics (Proceedings of SIGGRAPH 92). 26(2), pp. 177-184, 1992. • Working with control points can be awkward • Apply (displacement) constraints directly to surface William M. Hsu, John F. Hughes, Henry Kaufman, Direct manipulation of free-form deformations, Computer Graphics (Proceedings of SIGGRAPH 92). 26(2), pp. 177-184, 1992. If not all control points can move... Karan Singh, Eugene L. Fiume, Wires: A Geometric Deformation Technique, Proceedings of SIGGRAPH 98. pp. 405-414, 1998. Physically Based Deformation Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable Models, ACM SIGGRAPH 87, 205-214, 1987. • Major contribution to physically based deformable models in graphics (read!) • Lagrangian derivation of eqns of motion (similar to our equations yesterday) Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable Models, ACM SIGGRAPH 87, 205-214, 1987. • Finite difference discretization on grids • Semi-implicit integration... Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable Models, ACM SIGGRAPH 87, 205-214, 1987. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable Models, ACM SIGGRAPH 87, 205-214, 1987. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. Elastically Deformable Models, ACM SIGGRAPH 87, 205-214, 1987. John C. Platt, Alan H. Barr Constraint methods for flexible models, ACM SIGGRAPH Computer Graphics, June 1988. • Look at deformation as a minimization process: – locally minimize f(x) • Consider two types of constraints: – Reaction constraints – Augmented Lagrangian constraints • Nice description of Lagrangian constraints for deformable models; saddle point problem • Constrained optimization problem: John C. Platt, Alan H. Barr Constraint methods for flexible models, ACM SIGGRAPH Computer Graphics, June 1988. John C. Platt, Alan H. Barr Constraint methods for flexible models, ACM SIGGRAPH Computer Graphics, June 1988. John C. Platt, Alan H. Barr Constraint methods for flexible models, ACM SIGGRAPH Computer Graphics, June 1988. Alex Pentland, John Williams, Good Vibrations: Modal Dynamics for Graphics and Animation, Computer Graphics (Proceedings of SIGGRAPH 89). 23(3), pp. 215-222, 1989. • Modal analysis for linear elastodynamics • Modal transformation converts coupled ODEs into a decoupled system of ODEs No time-stepping stiffness More later with DyRT02 and sound • • Alex Pentland, John Williams, Good Vibrations: Modal Dynamics for Graphics and Animation, Computer Graphics (Proceedings of SIGGRAPH 89). 23(3), pp. 215-222, 1989. Alex Pentland, John Williams, Good Vibrations: Modal Dynamics for Graphics and Animation, Computer Graphics (Proceedings of SIGGRAPH 89). 23(3), pp. 215-222, 1989. • “Approximate modes” • Volumetric collision handling Dimitri Metaxas, Demetri Terzopoulos, Dynamic deformation of solid primitives with constraints, ACM SIGGRAPH Computer Graphics, 26(2), p.309-312, July 1992. • Use global deformation basis with, e.g., FEM models • Unstabilized system • Baumgarte stabilization used • Use a specialized local constraint solver Dimitri Metaxas, Demetri Terzopoulos, Dynamic deformation of solid primitives with constraints, ACM SIGGRAPH Computer Graphics, 26(2), p.309-312, July 1992. Dimitri Metaxas, Demetri Terzopoulos, Dynamic deformation of solid primitives with constraints, ACM SIGGRAPH Computer Graphics, 26(2), p.309-312, July 1992. David Baraff, Andrew Witkin, Dynamic simulation of non-penetrating flexible bodies, Computer Graphics (Proceedings of SIGGRAPH 92). 26(2), pp. 303-308, 1992. • Addresses defo numerical stiffness • Use global deformation basis, similar to Pentland and Williams, but don’t assume linear elastodynamics • Related to “subspace projection” • Use derivation from Witkin-Welch-1990. Marie-Paule Gascuel, An implicit formulation for precise contact modeling between flexible solids, ACM SIGGRAPH 93, p.313-320, September 1993. • Implicit handling of contact between quasistatic deformable models. • Two components: – A rigid component which obeys the rigid body equations of motion. Its mass distribution corresponds to the object’s rest shape. – A deformable layer at rest relative to the rigid layer. • Stiffness modeled using field functions Marie-Paule Gascuel, An implicit formulation for precise contact modeling between flexible solids, ACM SIGGRAPH 93, p.313-320, September 1993. • Contact zone definition: fi(P) = fj(P) Marie-Paule Gascuel, An implicit formulation for precise contact modeling between flexible solids, ACM SIGGRAPH 93, p.313-320, September 1993. Marie-Paule Gascuel, An implicit formulation for precise contact modeling between flexible solids, ACM SIGGRAPH 93, p.313-320, September 1993. Also work by Desbrun + Cani. Will discuss implicit methods more later. Demetri Terzopoulos , Hong Qin, Dynamic NURBS with geometric constraints for interactive sculpting, ACM Transactions on Graphics (TOG), v.13 n.2, p.103-136, April 1994. • Use NURBS as shape functions • Adds support for forces and other constraints to geometric modeling • Lagrangian mechanics Demetri Terzopoulos , Hong Qin, Dynamic NURBS with geometric constraints for interactive sculpting, ACM Transactions on Graphics (TOG), v.13 n.2, p.103-136, April 1994. • Final Baumgarte stabilized (a,b) system: Dynamic Free-Form Deformations for Animation Synthesis Petros Faloutsos, Michiel van de Panne, Demetri Terzopoulos. IEEE Transactions on Visualization and Computer Graphics. 3(3), pp. 201214, 1997. • Use FFDs as shape functions Sarah F. F. Gibson, 3D Chainmail: a Fast Algorithm for Deforming Volumetric Objects, 1997 Symposium on Interactive 3D Graphics. pp. 149-154, 1997. • Simple energy minimizing relaxation scheme • Quasistatic deformation in the limit • Simple but works for huge systems – Complex volume models