MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De FEM Discretization of 2D Elasticity.
Download ReportTranscript MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De FEM Discretization of 2D Elasticity.
MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De FEM Discretization of 2D Elasticity Reading assignment: Lecture notes Summary: • FEM Formulation of 2D elasticity (plane stress/strain) •Displacement approximation •Strain and stress approximation •Derivation of element stiffness matrix and nodal load vector •Assembling the global stiffness matrix • Application of boundary conditions • Physical interpretation of the stiffness matrix Recap: 2D Elasticity Volume element dV Xb dV Xa dV v y py px Volume (V) u ST x Su x Examples: concept of displacement field Su: Portion of the boundary on which displacements are prescribed (zero or nonzero) ST: Portion of the boundary on which tractions are prescribed (zero or nonzero) Example y 2 1 2 2 4 3 x For the square block shown above, determine u and v for the following displacements Case 2: Pure shear y y Case 1: Stretch 1/2 2 4 2 1 x Solution Case 1: Stretch ux y v 2 Check that the new coordinates (in the deformed configuration) x' x u 2x y ' y yv 2 Case 2: Pure shear u y/4 v0 Check that the new coordinates (in the deformed configuration) x' x u x y / 4 y' y v y Recap: 2D Elasticity Displacement field u u ( x, y) Strain - Displacement Relation u Stress - Strain Law D Du u (x, y) u v (x, y) 0 x x x 0 y y y xy xy y x For plane stress For plane strain (3 nonzero stress components) (3 nonzero strain components) 1 0 1 0 E E D 1 0 D 1 0 1 1 2 1 2 1 2 1 0 0 0 0 2 2 Strong formulation Equilibrium equations X 0 in V T Boundary conditions 1. Displacement boundary conditions: Displacements are specified on portion Su of the boundary u u specified on Su 2. Traction (force) boundary conditions: Tractions are specified on portion ST of the boundary Now, how do I express this mathematically? But in finite element analysis we DO NOT work with the strong formulation (why?), instead we use an equivalent Principle of Minimum Potential Energy Principle of Minimum Potential Energy (2D) Definition: For a linear elastic body subjected to body forces X=[Xa,Xb]T and surface tractions TS=[px,py]T, causing displacements u=[u,v]T and strains and stresses , the potential energy P is defined as the strain energy minus the potential energy of the loads (X and TS) PU-W Volume element dV Xb dV Xa dV v y Volume (V) u ST x Su x U 1 T dV 2 V W u X dV u T S dS T V T ST py px Strain energy of the elastic body Using the stress-strain law D 1 1 T T U dV D dV 2 V 2 V In 2D plane stress/plane strain 1 T U dV 2 V T x x 1 y y dV 2 V xy xy 1 x x y y xy xy dV 2 V Principle of minimum potential energy: Among all admissible displacement fields the one that satisfies the equilibrium equations also render the potential energy P a minimum. “admissible displacement field”: 1. first derivative of the displacement components exist 2. satisfies the boundary conditions on Su Finite element formulation for 2D: Step 1: Divide the body into finite elements connected to each other through special points (“nodes”) py v3 3 px 4 3 u3 u 1 v4 2 v v2 Element ‘e’ v 1 1 4 u 2 u u4 ST v1 2 u2 v 2 y d x y u3 Su u1 v 3 1 v x x u 4 u v 4 Total potential energy 1 T T T P dV u X dV u T S dS V ST 2 V Potential energy of element ‘e’: 1 T T T P e dV u X dV u T S dS V S 2 V e e e T This term may or may not be present depending on whether the element is actually on ST Total potential energy = sum of potential energies of the elements P Pe e Step 2: Describe the behavior of each element (i.e., derive the stiffness matrix of each element and the nodal load vector). Inside the element ‘e’ v3 (x3,y3) 3 v4 v2 Displacement at any point x=(x,y) u (x, y) u v (x, y) (x4,y4) Nodal displacement vector 4 u4 u 1 u2 v v1 2 v where 1 u (x ,y ) u1=u(x1,y1) 2 2 y u 2 v =v(x ,y ) 1 1 1 u 1 1(x1,y1) v 2 etc d x u 3 v 3 u 4 v 4 u3 Recall Strain - Displacement Relation u Stress - Strain Law D Du x y xy x y xy x 0 y 0 y x If we knew u then we could compute the strains and stresses within the element. But I DO NOT KNOW u!! Hence we need to approximate u first (using shape functions) and then obtain the approximations for and (recall the case of a 1D bar) This is accomplished in the following 3 Tasks in the next slide TASK 1: APPROXIMATE THE DISPLACEMENTS WITHIN EACH ELEMENT Displacement approximation in terms of shape functions uNd TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT Strain approximation ε Bd Stress approximation DB d TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT USING THE PRINCIPLE OF MIN. POT ENERGY We’ll see these for a generic element in 2D today and then derive expressions for specific finite elements in the next few classes TASK 1: APPROXIMATE THE DISPLACEMENTS WITHIN EACH ELEMENT Displacement approximation in terms of shape functions v3 3 u3 v4 v2 Displacement approximation within element ‘e’ 4 u4 u2 v1 2 u (x,y) N1(x,y) u1 N 2 (x,y) u 2 N 3(x,y) u 3 N 4 (x,y) u 4 y u1 v (x,y) N1(x,y) v1 N 2 (x,y) v2 N 3(x,y) v3 N 4 (x,y) v4 1 v x u u (x,y) N1(x,y) u1 N 2 (x,y) u 2 N 3(x,y) u 3 N 4 (x,y) u 4 v (x,y) N1(x,y) v1 N 2 (x,y) v2 N 3(x,y) v3 N 4 (x,y) v4 u (x, y) N 1 u v (x, y) 0 uNd 0 N2 0 N3 0 N4 N1 0 N2 0 N3 0 u 1 v 1 u 2 0 v 2 N 4 u 3 v 3 u 4 v 4 We’ll derive specific expressions of the shape functions for different finite elements later TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT Approximation of the strain in element ‘e’ N 3 (x, y) N 2 (x, y) N 4 (x, y) u (x, y) N1(x, y) x u1 u2 u3 u4 x x x x x N 3 (x, y) N 2 (x, y) N 4 (x, y) v (x, y) N1(x, y) y v1 v2 v3 v4 y y y y y N1(x, y) u (x, y) v (x, y) N1(x, y) xy u1 v1 ...... y x y x x y xy u 1 v N 1(x, y) 1 N 3 (x, y) N 2 (x, y) N 4 (x, y) 0 0 0 0 u 2 x x x x N (x, y) N (x, y) N (x, y) N (x, y) 3 1 2 4 v 2 0 0 0 0 y y y y u 3 N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) 3 3 1 2 2 4 4 1 v 3 x y x y x y x u y 4 B v 4 ε Bd Compact approach to derive the B matrix: Displacement field u N d Strain - Displacement Relation u N d Bd B N Stress approximation within the element ‘e’ Stress - Strain Law D D B TASK 3: DERIVE THE STIFFNESS MATRIX OF EACH ELEMENT USING THE PRINCIPLE OF MININUM POTENTIAL ENERGY Potential energy of element ‘e’: 1 T T T P e e dV e u X dV e u T S dS V ST 2 V Lets plug in the approximations uNd ε Bd DB d 1 T T T P e (d) e DB d B d dV e N d X dV e N d T S dS V ST 2 V Rearranging 1 T T T T T T P e (d) d e B D B dV d d e N X dV d e N T S dS V ST 2 V 1 T T T T T d e B D B dV d d e N X dV e N T S dS ST V 2 V k f 1 T T d k dd f 2 From the Principle of Minimum Potential Energy P e (d ) P e (d) k d f 0 d Discrete equilibrium equation for element ‘e’ kd f Element stiffness matrix for element ‘e’ k e B D B dV T V For a 2D element, the size of the k matrix is 2 x number of nodes of the element Question: If there are ‘n’ nodes per element, then what is the size of the stiffness matrix of that element? Element nodal load vector f e N X dV e N T S dS V ST T f T b Due to body force f S Due to surface traction STe e If the element is of thickness ‘t’ k e t B D B dA T A For a 2D element, the size of the k matrix is 2 x number of nodes of the element dA dV=tdA Element nodal load vector t f e t N X dA e t N T S dl A lT T T f f b Due to body force S Due to surface traction The properties of the element stiffness matrix k e B D B dV T V 1. The element stiffness matrix is singular and is therefore noninvertible 2. The stiffness matrix is symmetric 3. Sum of any row (or column) of the stiffness matrix is zero! (why?) Computation of the terms in the stiffness matrix of 2D elements v4 v3 4 The B-matrix (strain-displacement) corresponding to this element is 3 u4 u3 u1 v y v1 (x,y) v2 u 2 1 u1 u2 N1 (x,y) x 0 N1 (x,y) y v1 u2 v2 0 N 2 (x,y) x 0 N1 (x,y) y N1 (x,y) x 0 N 2 (x,y) y N 2 (x,y) y N 2 (x,y) x u3 N 3 (x,y) x 0 N 3 (x,y) y x We will denote the columns of the B-matrix as N1 (x,y) 0 x N1 (x,y) ; and so on... B u1 0 ; B v1 y N (x,y) 1 N (x,y) 1 y x v3 0 N 3 (x,y) y N 3 (x,y) x u4 v4 N 4 (x,y) x N 4 (x,y) y N 4 (x,y) x 0 N 4 (x,y) y 0 The stiffness matrix corresponding to this element is k e B D B dV T which has the following form V u1 v1 k11 k 21 k31 k k 41 k51 k61 k 71 k81 k12 k 22 k32 k 42 k52 k62 k72 k82 u2 k13 k 23 k33 k 43 k53 k63 k73 k83 v2 u3 k14 k 24 k34 k 44 k54 k64 k74 k84 k15 k 25 k35 k 45 k55 k65 k75 k85 v3 k16 k 26 k36 k 46 k56 k66 k76 k86 u4 v4 k17 k 27 k 37 k 47 k57 k 67 k 77 k87 k18 k 28 k 38 k 48 k58 k 68 k 78 k88 u1 v1 u2 v2 u3 v3 u4 v4 The individual entries of the stiffness matrix may be computed as follows k11 e Bu1 D Bu1 dV; k12 e Bu1 D Bv1 dV; k13 e Bu1 D Bu2 dV,... T T V V V k21 e Bv1 D Bu1 dV; k21 e Bv1 D Bv1 dV;..... T V T V T Step 3: Assemble the element stiffness matrices into the global stiffness matrix of the entire structure For this create a node-element connectivity chart exactly as in 1D v3 Element #1 3 v1 v4 1 v2 u1 y u3 ELEMENT Node 1 Node 2 Node 3 4 u4 Element #2 u2 2 v u x 1 1 2 3 2 2 3 4 Stiffness matrix of element 1 u1 v1 u2 v2 u3 v3 k (1) Stiffness matrix of element 2 u2 v2 u3 v3 u4 v4 u1 v1 ( 2) u2 k v2 u3 v3 There are 6 degrees of freedom (dof) per element (2 per node) u2 v2 u3 v3 u4 v4 k (1) Global stiffness matrix u1 v1 u2 v2 u3 v3 u4 v4 K u1 v1 u 2 v2 u3 v3 u4 8v48 How do you incorporate boundary conditions? Exactly as in 1D k ( 2) Finally, solve the system equations taking care of the displacement boundary conditions. Physical interpretation of the stiffness matrix Consider a single triangular element. The six corresponding equilibrium equations ( 2 equilibrium equations in the x- and ydirections at each node times the number of nodes) can be written symbolically as kd f v1 1 u1 v2 v3 3 y u2 2 x u3 k11 k 21 k 31 k 41 k 51 k 61 k12 k 22 k 32 k 42 k 52 k 62 k13 k 23 k 33 k 43 k 53 k 63 k14 k 24 k 34 k 44 k 54 k 64 k15 k 25 k 35 k 45 k 55 k 65 k16 u 1 f1x k 26 v1 f1y k 36 u 2 f 2x k 46 v 2 f 2y k 56 u 3 f 3x k 66 v 3 f 3y Choose u1 = 1 and rest of the nodal displacements = 0 k11 f1x k f 21 1y k 31 f 2x k 41 f 2y k 51 f 3x k 61 f 3y u1=1 1 3 y 2 x Hence, the first column of the stiffness matrix represents the nodal loads when u1=1 and all other dofs are fixed. This is the physical interpretation of the first column of the stiffness matrix. Similar interpretations exist for the other columns “Force” at d.o.f ‘i’ due to unit displacement at d.o.f ‘j’ k ij = keeping all the other d.o.fs fixed Now consider the ith row of the matrix equation k d f ki1 ki 2 ki3 ki 4 ki5 ki 6 d f ix This is the equation of equilibrium at the ith dof Consistent and Lumped nodal loads Recall that the nodal loads due to body forces and surface tractions f b e N X dV; T V fS ST e T N T S dS These are known as “consistent nodal loads” 1. They are derived in a consistent manner using the Principle of Minimum Potential Energy 2. The same shape functions used in the computation of the stiffness matrix are employed to compute these vectors p per unit area Example y 1 b 2 b 3 x Traction distribution on the 12-3 edge px = p py= 0 We’ll see later that y(b y) b2 y 2 y(b y) N1 ; N2 ; N3 2 2 2b b 2b 2 N1 N2 N3 The consistent nodal loads are y (b y ) pb F1x p N1 dy p dy 2 b b 3 2b b b b2 y2 4 pb F2 x p N 2 dy p dy 2 b b 3 b b b y (b y ) pb F3 x p N 3 dy p dy 2 b b 3 2b b b y b 1 pb/3 2 4pb/3 b 3 pb/3 x The lumped nodal loads are pb F1x 2 F2 x pb pb F3 x 2 y b 1 pb/2 2 pb x b 3 pb/2 Lumping produces poor results and will not be pursued further Summary: For each element Displacement approximation in terms of shape functions uNd Strain approximation in terms of strain-displacement matrix ε Bd Stress approximation DB d Element stiffness matrix k e B D B dV T V Element nodal load vector f e N X dV e N T S dS V ST T f T b f S