MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Constant Strain Triangle (CST)
Download
Report
Transcript MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Constant Strain Triangle (CST)
MANE 4240 & CIVL 4240
Introduction to Finite Elements
Prof. Suvranu De
Constant Strain
Triangle (CST)
Reading assignment:
Logan 6.2-6.5 + Lecture notes
Summary:
• Computation of shape functions for constant strain triangle
• Properties of the shape functions
• Computation of strain-displacement matrix
• Computation of element stiffness matrix
• Computation of nodal loads due to body forces
• Computation of nodal loads due to traction
• Recommendations for use
• Example problems
Finite element formulation for 2D:
Step 1: Divide the body into finite elements connected to each
other through special points (“nodes”)
py
v3
3
px
4
3
u3
u 1
v4
2
v
v2
Element ‘e’
v
1
1
4
u 2
u
u4
ST
v1
2 u2
v 2
y
d
x
y
u3
Su
u1
v 3
1
v
x
x
u 4
u
v
4
u (x,y) N1(x,y) u1 N 2 (x,y) u 2 N 3(x,y) u 3 N 4 (x,y) u 4
v (x,y) N1(x,y) v1 N 2 (x,y) v2 N 3(x,y) v3 N 4 (x,y) v4
u (x, y) N 1
u
v (x, y) 0
uNd
0
N2
0
N3
0
N4
N1
0
N2
0
N3
0
u 1
v
1
u 2
0 v 2
N 4 u 3
v 3
u 4
v
4
TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN
EACH ELEMENT
Approximation of the strain in element ‘e’
N 3 (x, y)
N 2 (x, y)
N 4 (x, y)
u (x, y) N1(x, y)
x
u1
u2
u3
u4
x
x
x
x
x
N 3 (x, y)
N 2 (x, y)
N 4 (x, y)
v (x, y) N1(x, y)
y
v1
v2
v3
v4
y
y
y
y
y
N1(x, y)
u (x, y) v (x, y) N1(x, y)
xy
u1
v1 ......
y
x
y
x
x
y
xy
u 1
v
N 1(x, y)
1
N 3 (x, y)
N 2 (x, y)
N 4 (x, y)
0
0
0
0
u 2
x
x
x
x
N
(x,
y)
N
(x,
y)
N
(x,
y)
N
(x,
y)
3
1
2
4
v 2
0
0
0
0
y
y
y
y u 3
N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y)
3
3
1
2
2
4
4
1
v 3
x
y
x
y
x
y
x u
y
4
B
v
4
ε Bd
Summary: For each element
Displacement approximation in terms of shape functions
uNd
Strain approximation in terms of strain-displacement matrix
ε Bd
Stress approximation
DB d
Element stiffness matrix
k e B D B dV
T
V
Element nodal load vector
f e N X dV e N T S dS
V
ST
T
f
T
b
f
S
Constant Strain Triangle (CST) : Simplest 2D finite element
v1
1
(x1,y1)
v2
y
u1
v3
(x3,y3)
v
(x,y)
2 (x2,y2)
u
3
u3
u2
x
• 3 nodes per element
• 2 dofs per node (each node can move in x- and y- directions)
• Hence 6 dofs per element
The displacement approximation in terms of shape functions is
u (x,y) N1u1 N 2 u 2 N 3u 3
v(x,y) N1v1 N 2 v 2 N 3v 3
u (x, y) N1
u
v (x, y) 0
0
N1
N2
0
0
N2
N3
0
u 21 N 26 d 61
N1
N
0
0
N2
0
N3
N1
0
N2
0
0
N 3
u1
v
1
0 u 2
N 3 v 2
u 3
v 3
Formula for the shape functions are
v1
v3
1
u1
(x3,y3)
(x1,y1)
u3
v2 v
u
3
y
(x,y)
where
2 (x2,y2)
u2
x
a1 b1 x c1 y
N1
2A
a 2 b2 x c2 y
N2
2A
a3 b3 x c3 y
N3
2A
1 x 1
1
A area of triangle det 1 x 2
2
1 x 3
y1
y 2
y 3
a1 x 2 y 3 x3 y 2
b1 y 2 y 3
c1 x3 x 2
a 2 x3 y1 x1 y 3
a3 x1 y 2 x 2 y1
b2 y 3 y1
b3 y1 y 2
c 2 x1 x3
c3 x 2 x1
Properties of the shape functions:
1. The shape functions N1, N2 and N3 are linear functions of x
and y
N2
N1
1
N3
1
1
1
1
3
3
y
1
2
3
2
x
1 at node' i'
Ni
0 at other nodes
2
2. At every point in the domain
3
N
i 1
i
1
3
N x
i 1
i
i
3
N y
i 1
i
i
x
y
3. Geometric interpretation of the shape functions
At any point P(x,y) that the shape functions are evaluated,
P (x,y)
1
A3
y
A2
A1
2
x
3
A1
N1
A
A2
N2
A
A3
N3
A
Approximation of the strains
u
x
x
v
y
Bd
y
xy u v
y x
N1(x,y)
0
x
N1(x, y)
B 0
y
N (x,y) N (x, y)
1
1
x
y
N 2 (x, y)
x
0
N 2 (x, y)
y
b1 0 b2 0 b3 0
1
0 c1 0 c2 0 c3
2A
c1 b1 c2 b2 c3 b3
0
N 2 (x, y)
y
N 2 (x, y)
x
0
N 3 (x, y)
0
y
N 3 (x, y) N 3 (x, y)
y
x
N 3 (x, y)
x
Inside each element, all components of strain are constant: hence
the name Constant Strain Triangle
Element stresses (constant inside each element)
DB d
IMPORTANT NOTE:
1. The displacement field is continuous across element
boundaries
2. The strains and stresses are NOT continuous across element
boundaries
Element stiffness matrix
t
k e B D B dV
T
V
Since B is constant
A
k B D B e dV B D B At
T
T
V
t=thickness of the element
A=surface area of the element
Element nodal load vector
f e N X dV e N T S dS
V
ST
T
f
T
b
f
S
Element nodal load vector due to body forces
f b e N X dV t e N X dA
T
T
V
A
fb1y
1
y
fb2y
fb1x
Xb
(x,y)
Xa
fb2x
2
x
fb3y
3
fb3x
t N X
1
a
Ae
f
b1x
f t e N1 X b
b1 y A
f b 2 x t e N 2 X a
fb
A
f b 2 y t Ae N 2 X b
f b3 x
t Ae N 3 X a
f b 3 y
t Ae N 3 X b
dA
dA
dA
dA
dA
dA
EXAMPLE:
If Xa=1 and Xb=0
t N X
1
a
Ae
f b1x
f t e N1 X b
b1 y A
f b 2 x t e N 2 X a
fb
A
f b 2 y t Ae N 2 X b
f b3 x
t Ae N 3 X a
f b 3 y
t Ae N 3 X b
dA
tA
t e N 1 dA
3
A
dA
0
0
dA t N dA tA
Ae 2 3
0
dA
0
t N dA tA
dA Ae 3
3
0
0
dA
Element nodal load vector due to traction
f S e N T S dS
T
ST
EXAMPLE:
fS1y
f S t
fS3y
1
l13
fS1x
3
y
2
x
fS3x
N
e
T
along 13
T S dS
Element nodal load vector due to traction
EXAMPLE:
f S t
fS2y
l23
(2,2)
2
y
fS3y
1
(0,0)
fS2x
1
TS
0
3 f
(2,0) S3x
T
x
N
e
f S2 x t
l 2 3
along 23
Similarly, compute
f S3 x t
f S3 y 0
1
N 2 along 23 (1) dy
e
1
t 2 1 t
2
f S2 y 0
T S dS
2
Recommendations for use of CST
1. Use in areas where strain gradients are small
2. Use in mesh transition areas (fine mesh to coarse mesh)
3. Avoid CST in critical areas of structures (e.g., stress
concentrations, edges of holes, corners)
4. In general CSTs are not recommended for general analysis
purposes as a very large number of these elements are required
for reasonable accuracy.
Example
y
3
1000 lb
300 psi
2
El 2
2 in
El 1
1
4
Thickness (t) = 0.5 in
E= 30×106 psi
n=0.25
x
3 in
(a) Compute the unknown nodal displacements.
(b) Compute the stresses in the two elements.
Realize that this is a plane stress problem and therefore we need to use
1
n
0
3.2 0.8 0
E
0.8 3.2 0 107 psi
D
n
1
0
1 n 2
1 n
0 1.2
0 0
0
2
Step 1: Node-element connectivity chart
ELEMENT
Node 1
Node 2
Node 3
Area
(sqin)
1
1
2
4
3
2
3
4
2
3
Node
x
y
1
3
0
2
3
2
3
0
2
4
0
0
Nodal coordinates
Step 2: Compute strain-displacement matrices for the elements
Recall
b1 0 b2 0 b3 0
1
B 0 c1 0 c2 0 c3
2A
c1 b1 c2 b2 c3 b3
For Element #1:
2(2)
with
b1 y2 y3
c1 x3 x2
b2 y3 y1 b3 y1 y2
c2 x1 x3 c3 x2 x1
y1 0; y2 2; y3 0
x1 3; x2 3; x3 0
Hence
b1 2 b2 0 b3 2
c1 3 c2 3 c3 0
4(3)
1(1) Therefore
(local numbers within brackets)
For Element #2:
2 0 0 0 2 0
1
( 2)
B 0 3 0 3 0 0
6
3 2 3 0 0 2
2 0 0 0 2 0
1
(1)
B 0 3 0 3 0 0
6
3 2 3 0 0 2
Step 3: Compute element stiffness matrices
k AtB
(1)
(1) T
D B (3)(0.5)B
(1)
(1) T
DB
(1)
0.9833 0.5 0.45 0.2 0.5333
1.4
0.3 1.2
0.2
0.45
0
0
1.2
0 .2
0.5333
u1
v1
u2
v2
u4
0.3
0.2
0.3
7
10
0
0
0.2
v4
k
( 2)
AtB
( 2) T
D B (3)(0.5)B
( 2)
( 2) T
DB
( 2)
0.9833 0.5 0.45 0.2 0.5333
1.4
0.3 1.2
0.2
0.45
0
0
1.2
0 .2
0.5333
u3
v3
u4
v4
u2
0.3
0.2
0.3
7
10
0
0
0.2
v2
Step 4: Assemble the global stiffness matrix corresponding to the nonzero degrees of
freedom
Notice that
u3 v3 u4 v4 v1 0
Hence we need to calculate only a small (3x3) stiffness matrix
u1
0.983 0.45 0.2
K 0.45 0.983 0 107 u2
0.2
0
1.4
v2
u1
u2
v2
Step 5: Compute consistent nodal loads
f1 x 0
f f2x 0
f f
2y 2y
f 2 y 1000 f S2 y
The consistent nodal load due to traction on the edge 3-2
f S2 y
3
x 0
N 3 3 2 (300)tdx
(300)(0.5)
3
x 0
x
3
N 3 3 2 dx
x
150
dx
x 0 3
3
3
N 2 3 2
x2
9
50 50 225 lb
2
2 0
3
2
Hence
f 2 y 1000 f S2 y
1225 lb
Step 6: Solve the system equations to obtain the unknown nodal loads
Kd f
0.983 0.45 0.2 u1 0
107 0.45 0.983 0 u 2 0
0.2
0
1.4
v2 1225
Solve to get
4
u1 0.233710 in
4
u
0
.
1069
10
in
2
v 0.908410 4 in
2
Step 7: Compute the stresses in the elements
In Element #1
(1) D B(1) d(1)
With
d
(1) T
u1 v1 u2 v2 u4 v4
0.2337104 0 0.1069104
Calculate
(1)
114.1
1391.1 psi
76.1
0.9084104 0 0
In Element #2
(2) D B(2) d(2)
With
d
( 2)T
u3 v3 u4 v4 u2 v2
0 0 0 0 0.1069104
0.9084104
Calculate
( 2)
114.1
28.52 psi
363.35
Notice that the stresses are constant in each element