MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Constant Strain Triangle (CST)
Download ReportTranscript MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Constant Strain Triangle (CST)
MANE 4240 & CIVL 4240 Introduction to Finite Elements Prof. Suvranu De Constant Strain Triangle (CST) Reading assignment: Logan 6.2-6.5 + Lecture notes Summary: • Computation of shape functions for constant strain triangle • Properties of the shape functions • Computation of strain-displacement matrix • Computation of element stiffness matrix • Computation of nodal loads due to body forces • Computation of nodal loads due to traction • Recommendations for use • Example problems Finite element formulation for 2D: Step 1: Divide the body into finite elements connected to each other through special points (“nodes”) py v3 3 px 4 3 u3 u 1 v4 2 v v2 Element ‘e’ v 1 1 4 u 2 u u4 ST v1 2 u2 v 2 y d x y u3 Su u1 v 3 1 v x x u 4 u v 4 u (x,y) N1(x,y) u1 N 2 (x,y) u 2 N 3(x,y) u 3 N 4 (x,y) u 4 v (x,y) N1(x,y) v1 N 2 (x,y) v2 N 3(x,y) v3 N 4 (x,y) v4 u (x, y) N 1 u v (x, y) 0 uNd 0 N2 0 N3 0 N4 N1 0 N2 0 N3 0 u 1 v 1 u 2 0 v 2 N 4 u 3 v 3 u 4 v 4 TASK 2: APPROXIMATE THE STRAIN and STRESS WITHIN EACH ELEMENT Approximation of the strain in element ‘e’ N 3 (x, y) N 2 (x, y) N 4 (x, y) u (x, y) N1(x, y) x u1 u2 u3 u4 x x x x x N 3 (x, y) N 2 (x, y) N 4 (x, y) v (x, y) N1(x, y) y v1 v2 v3 v4 y y y y y N1(x, y) u (x, y) v (x, y) N1(x, y) xy u1 v1 ...... y x y x x y xy u 1 v N 1(x, y) 1 N 3 (x, y) N 2 (x, y) N 4 (x, y) 0 0 0 0 u 2 x x x x N (x, y) N (x, y) N (x, y) N (x, y) 3 1 2 4 v 2 0 0 0 0 y y y y u 3 N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) N (x, y) 3 3 1 2 2 4 4 1 v 3 x y x y x y x u y 4 B v 4 ε Bd Summary: For each element Displacement approximation in terms of shape functions uNd Strain approximation in terms of strain-displacement matrix ε Bd Stress approximation DB d Element stiffness matrix k e B D B dV T V Element nodal load vector f e N X dV e N T S dS V ST T f T b f S Constant Strain Triangle (CST) : Simplest 2D finite element v1 1 (x1,y1) v2 y u1 v3 (x3,y3) v (x,y) 2 (x2,y2) u 3 u3 u2 x • 3 nodes per element • 2 dofs per node (each node can move in x- and y- directions) • Hence 6 dofs per element The displacement approximation in terms of shape functions is u (x,y) N1u1 N 2 u 2 N 3u 3 v(x,y) N1v1 N 2 v 2 N 3v 3 u (x, y) N1 u v (x, y) 0 0 N1 N2 0 0 N2 N3 0 u 21 N 26 d 61 N1 N 0 0 N2 0 N3 N1 0 N2 0 0 N 3 u1 v 1 0 u 2 N 3 v 2 u 3 v 3 Formula for the shape functions are v1 v3 1 u1 (x3,y3) (x1,y1) u3 v2 v u 3 y (x,y) where 2 (x2,y2) u2 x a1 b1 x c1 y N1 2A a 2 b2 x c2 y N2 2A a3 b3 x c3 y N3 2A 1 x 1 1 A area of triangle det 1 x 2 2 1 x 3 y1 y 2 y 3 a1 x 2 y 3 x3 y 2 b1 y 2 y 3 c1 x3 x 2 a 2 x3 y1 x1 y 3 a3 x1 y 2 x 2 y1 b2 y 3 y1 b3 y1 y 2 c 2 x1 x3 c3 x 2 x1 Properties of the shape functions: 1. The shape functions N1, N2 and N3 are linear functions of x and y N2 N1 1 N3 1 1 1 1 3 3 y 1 2 3 2 x 1 at node' i' Ni 0 at other nodes 2 2. At every point in the domain 3 N i 1 i 1 3 N x i 1 i i 3 N y i 1 i i x y 3. Geometric interpretation of the shape functions At any point P(x,y) that the shape functions are evaluated, P (x,y) 1 A3 y A2 A1 2 x 3 A1 N1 A A2 N2 A A3 N3 A Approximation of the strains u x x v y Bd y xy u v y x N1(x,y) 0 x N1(x, y) B 0 y N (x,y) N (x, y) 1 1 x y N 2 (x, y) x 0 N 2 (x, y) y b1 0 b2 0 b3 0 1 0 c1 0 c2 0 c3 2A c1 b1 c2 b2 c3 b3 0 N 2 (x, y) y N 2 (x, y) x 0 N 3 (x, y) 0 y N 3 (x, y) N 3 (x, y) y x N 3 (x, y) x Inside each element, all components of strain are constant: hence the name Constant Strain Triangle Element stresses (constant inside each element) DB d IMPORTANT NOTE: 1. The displacement field is continuous across element boundaries 2. The strains and stresses are NOT continuous across element boundaries Element stiffness matrix t k e B D B dV T V Since B is constant A k B D B e dV B D B At T T V t=thickness of the element A=surface area of the element Element nodal load vector f e N X dV e N T S dS V ST T f T b f S Element nodal load vector due to body forces f b e N X dV t e N X dA T T V A fb1y 1 y fb2y fb1x Xb (x,y) Xa fb2x 2 x fb3y 3 fb3x t N X 1 a Ae f b1x f t e N1 X b b1 y A f b 2 x t e N 2 X a fb A f b 2 y t Ae N 2 X b f b3 x t Ae N 3 X a f b 3 y t Ae N 3 X b dA dA dA dA dA dA EXAMPLE: If Xa=1 and Xb=0 t N X 1 a Ae f b1x f t e N1 X b b1 y A f b 2 x t e N 2 X a fb A f b 2 y t Ae N 2 X b f b3 x t Ae N 3 X a f b 3 y t Ae N 3 X b dA tA t e N 1 dA 3 A dA 0 0 dA t N dA tA Ae 2 3 0 dA 0 t N dA tA dA Ae 3 3 0 0 dA Element nodal load vector due to traction f S e N T S dS T ST EXAMPLE: fS1y f S t fS3y 1 l13 fS1x 3 y 2 x fS3x N e T along 13 T S dS Element nodal load vector due to traction EXAMPLE: f S t fS2y l23 (2,2) 2 y fS3y 1 (0,0) fS2x 1 TS 0 3 f (2,0) S3x T x N e f S2 x t l 2 3 along 23 Similarly, compute f S3 x t f S3 y 0 1 N 2 along 23 (1) dy e 1 t 2 1 t 2 f S2 y 0 T S dS 2 Recommendations for use of CST 1. Use in areas where strain gradients are small 2. Use in mesh transition areas (fine mesh to coarse mesh) 3. Avoid CST in critical areas of structures (e.g., stress concentrations, edges of holes, corners) 4. In general CSTs are not recommended for general analysis purposes as a very large number of these elements are required for reasonable accuracy. Example y 3 1000 lb 300 psi 2 El 2 2 in El 1 1 4 Thickness (t) = 0.5 in E= 30×106 psi n=0.25 x 3 in (a) Compute the unknown nodal displacements. (b) Compute the stresses in the two elements. Realize that this is a plane stress problem and therefore we need to use 1 n 0 3.2 0.8 0 E 0.8 3.2 0 107 psi D n 1 0 1 n 2 1 n 0 1.2 0 0 0 2 Step 1: Node-element connectivity chart ELEMENT Node 1 Node 2 Node 3 Area (sqin) 1 1 2 4 3 2 3 4 2 3 Node x y 1 3 0 2 3 2 3 0 2 4 0 0 Nodal coordinates Step 2: Compute strain-displacement matrices for the elements Recall b1 0 b2 0 b3 0 1 B 0 c1 0 c2 0 c3 2A c1 b1 c2 b2 c3 b3 For Element #1: 2(2) with b1 y2 y3 c1 x3 x2 b2 y3 y1 b3 y1 y2 c2 x1 x3 c3 x2 x1 y1 0; y2 2; y3 0 x1 3; x2 3; x3 0 Hence b1 2 b2 0 b3 2 c1 3 c2 3 c3 0 4(3) 1(1) Therefore (local numbers within brackets) For Element #2: 2 0 0 0 2 0 1 ( 2) B 0 3 0 3 0 0 6 3 2 3 0 0 2 2 0 0 0 2 0 1 (1) B 0 3 0 3 0 0 6 3 2 3 0 0 2 Step 3: Compute element stiffness matrices k AtB (1) (1) T D B (3)(0.5)B (1) (1) T DB (1) 0.9833 0.5 0.45 0.2 0.5333 1.4 0.3 1.2 0.2 0.45 0 0 1.2 0 .2 0.5333 u1 v1 u2 v2 u4 0.3 0.2 0.3 7 10 0 0 0.2 v4 k ( 2) AtB ( 2) T D B (3)(0.5)B ( 2) ( 2) T DB ( 2) 0.9833 0.5 0.45 0.2 0.5333 1.4 0.3 1.2 0.2 0.45 0 0 1.2 0 .2 0.5333 u3 v3 u4 v4 u2 0.3 0.2 0.3 7 10 0 0 0.2 v2 Step 4: Assemble the global stiffness matrix corresponding to the nonzero degrees of freedom Notice that u3 v3 u4 v4 v1 0 Hence we need to calculate only a small (3x3) stiffness matrix u1 0.983 0.45 0.2 K 0.45 0.983 0 107 u2 0.2 0 1.4 v2 u1 u2 v2 Step 5: Compute consistent nodal loads f1 x 0 f f2x 0 f f 2y 2y f 2 y 1000 f S2 y The consistent nodal load due to traction on the edge 3-2 f S2 y 3 x 0 N 3 3 2 (300)tdx (300)(0.5) 3 x 0 x 3 N 3 3 2 dx x 150 dx x 0 3 3 3 N 2 3 2 x2 9 50 50 225 lb 2 2 0 3 2 Hence f 2 y 1000 f S2 y 1225 lb Step 6: Solve the system equations to obtain the unknown nodal loads Kd f 0.983 0.45 0.2 u1 0 107 0.45 0.983 0 u 2 0 0.2 0 1.4 v2 1225 Solve to get 4 u1 0.233710 in 4 u 0 . 1069 10 in 2 v 0.908410 4 in 2 Step 7: Compute the stresses in the elements In Element #1 (1) D B(1) d(1) With d (1) T u1 v1 u2 v2 u4 v4 0.2337104 0 0.1069104 Calculate (1) 114.1 1391.1 psi 76.1 0.9084104 0 0 In Element #2 (2) D B(2) d(2) With d ( 2)T u3 v3 u4 v4 u2 v2 0 0 0 0 0.1069104 0.9084104 Calculate ( 2) 114.1 28.52 psi 363.35 Notice that the stresses are constant in each element