Searches for Particle Dark Matter with gamma rays Jan Conrad CERN-PH Oskar Klein Centre Seminar Physics Department Stockholm University [email protected].
Download ReportTranscript Searches for Particle Dark Matter with gamma rays Jan Conrad CERN-PH Oskar Klein Centre Seminar Physics Department Stockholm University [email protected].
Searches for Particle Dark Matter with gamma rays Jan Conrad CERN-PH Oskar Klein Centre Seminar Physics Department Stockholm University [email protected] 1 Table of contents • • • • • Short Intro A few results and predictions The tentative Fermi-LAT spectral line Conclusions If time: three slides on complementarity 2 Who has never heard of this? 70% 25 % 3 Weakly Interacting Massive Particles (WIMPs) The weak interaction mass scale and ordinary gauge couplings give right relic DM density without fine-tuning. Mass scale O(GeV)-O(TeV), makes them Cold Dark Matter Wimp 1026 cm3 s 1 v v ~ weak ~ 2 2 WIMP m 25 3 1 ~ 10 cm s Jungman+, Phys. Rept. (1996) Will not talk about axions1, WISPs (sub-eV), sterile neutrinos (keV) … 4 Detection of Dark Matter Indirect detection rate = (particle physics part) × (astrophysical part) X-section Yield v Y ( E ) PPP m2 APP ddl 2 (l ) DM density, ”J –factor” WIMP mass 5 Universal spectral signatures Y(E) Ullio et al. Phys.Rev.D66:123502,2002 ... p 0 gg Birkedal et al., (Z,g)g Bringmann et al. JHEP 0801:049,2008. 6 APP- smooth Dark matter halo density profile Cosmological N-body simulations: NFW (r ) c r (a r ) 2 Einasto (r ) exp( Ar ) NavarroFrenk-White Einasto ”Cuspy” Stellar dynamics: Bur ker t (r ) c (r a)(a 2 r 2 ) We are here e.g. Burkert. ”Cored” R. Catena Strongest signal from the Galactic Center ! 7 APP- ´substructure We are here No Baryons, including them is work in progress – potentially interesting effects 8 Experimental implications • Particle physics part – DM particle’s spin, mass, annihilation cross section, branching fraction into final states and yield for a given final state (given by underlying theory, i.e. supersymmetry, Extra Dimensions, Inert Higgs etc,etc). Analysis optimized for given signature (mostly sensitive to cross-section, mass and (less so) branching fractions) Parameters of interest • Astrophysical part – (Density of DM particles)2, diffusion (charged cosmic rays ), absorption (gamma-rays from extragalactic sources) Where to look for the signal? Nuisance parameters > order of magnitude uncertainties 9 Satellite: Ground: Pair production (>10 MeV) Cherenkov radiation (> 20 GeV) 1.5 metres 10 000 metres g γ γ e + e– 2 metres 100 metres 10 Gamma-rays: sensitvitiy overview Large FOV (E ) ~ 10% Fermi: Water Cherenkov (E ) ~ 100% IACTs: angular resolution (0.10) CTA/CTA-US 2018 11 The Fermi Large Area Telescope (Fermi-LAT) g e e– + • LAT – 300 scientists from 6 countries – Silicon tracker, interleaved with tungsten – CsI(Tl) Calorimeter – Scans whole sky every three hours 11. June2008 12 Air Cherenkov Telescopes (2011) 4x12m IACTs, Crab sensitivity ~36 σ/√hr VERITAS 2x17m IACTs ~ 19 σ/√hr MAGIC 4x12m IACTs, Crab sensitivity ~43 σ/√hr (est) HESS All instruments have similar light collection area and have a “peak energy” of around 80-120 GeV (trigger level) but ~300 GeV after typical tight analysis cuts 13 First light for worlds largest Cherenkov Telescope: HESS II, Summer 2012 28 meter diameter 14 Targets and publications (incomplete) Galactic Centre Fermi-LAT: TeVPA 2009, arXiv:0912.3828 Fermi: Goodenough & Hooper, arXiv:0910.2998 Fermi: Dobler et al., arXiv:0910.4583 Dwarf galaxies, Dark Satellites, Galaxy Clusters Fermi-LAT: Phys. Rev. Lett. 107, 241302 (2011) H.E.S.S.: Astropart.Phys. 34 (2011) 608-616 MAGIC: Astrophys.J. 697 (2009) 1299-1304 VERITAS: Astrophys.J. 720 (2010) 1174-1180 . VERITAS: Phys.Rev.D85:062001,2012 Galactic diffuse H.E.S.S. Phys.Rev.Lett. 106 (2011) 161301 Fermi: Cirelli et. al. arXIv: 0912.0663 Fermi-LAT: arXiv: 1205.6474 Extra Galactic Diffuse Fermi-LAT: JCAP 1004:014,2010 Fermi: Akorvazian et. al.arXiv:1002.3820 Fermi : Huetsi et. al. arXiv:1004.2036 Lines Fermi-LAT: Phys.Rev.Lett.104:091302,2010 Fermi: Vertongen et al. JCAP 1105 (2011) 027 Fermi: Weniger et al. arXiv:1204.2797 Fermi: Bringmann et al. arXiv:1203.1312 Fermi-LAT: 1205.2739, Phys.Rev.D. 15 Targets and publications (incomplete) Galactic Centre Strongest signal expected, most difficult background Hard sources, not well understood diffuse emission, no useful constraint published so far Dwarf galaxies, Dark Satellites, Galaxy Clusters Dwarfs: weak signal, but relatively well controlled Dark Matter Distribution and essentially no background (if at high latitude). Clusters: DM density not well constrained, but provides boost factor (extended emission), so good for discovery (if lucky) Galactic diffuse Fermi-LAT: spatial and spectral discrimination, good statititstics, extreme freedom in galactic diffuse emission. IACT: best potential, small systematics due to diffuse emission, ~100 hour observation time (GC halo) Extra Galactic Diffuse Very model dependent, good as target for spatial analysis. Lines Smoking gun*, got to get lucky. 16 Dwarf galaxies probed in gamma-rays Fermi H.E.S.S. MAGIC Veritas 17 Dwarfs galaxies – cleanest target • • • • DM dominated (M/L ~10--1000). Nearby (~ 100 kpc) Low background but relatively small signal Stellar velocities can be used to measure DM density (error can be propagated to particle constraints) e.g: Charbonnier+, MNRAS 418 (2011) 1526 Strigari+,Phys. Rev. D, 75, 083526 Evans+, Phys. Rev., D69, 123501, (2004) 18 Analysis details Fermi Exposure Background (hours) modeling 11 month, Diffuse/ 24 month Point sources DM distribution Empirical NFW (~ 1500 h) H.E.S.S. ~15 On-off Empirical NFW Theo. NFW VERITAS ~15 On-off ~50 (Segue) MAGIC ~15 Empirical NFW Empirical Einasto On-off Empir. NFW Empir. core/cusp Kazantzidis 19 The new Fermi-LAT dwarf analysis Fermi-LAT: Phys. Rev. Lett. 107, 241302 (2011) • Combining single source likelihoods – less sensitive to individual source fluctuations, improved constraints, but analysis can be optimized individually • For the first time, including uncertainties in DM density – Applied to a the combination over-all result is much less affected by the DM density uncertainties (impact reduced by factor 10). 20 Results (2 years) 4 year limits with more accurate response function have been presented at the Fermi symposium A. Drlica-Wagner (Fermi-LAT), 21 Dwarf constraints -status χχ qq 22 Galactic diffuse emission: Best shot for Air Cherenkov telescopes DM signal Galactic diffuse emission Large signal (shape and spectrum) Large background Very complicated background for the Fermi-LAT 23 Galactic diffuse emission: hard for Fermi-LAT To some: To Fermi-LAT DM hunters:: Diffusion reacceleration convection energy loss Radiation field spallation decay B-field B-field CNO Gas e p DM π0 γγ π± e± Gas p-bar, π± e± π0 γγ Li, B Conventional diffuse emission: Fermi-LAT , Astrophys.J. 750 (2012) 3 (88 pages) 24 Methodology • Numerical solve Fokker-Planck-Kolmogorov equation (GALPROP) • 14 linear, 7 non-linear parameters, partly constrained from independent (cosmic ray) observations + source distribution 25 Signal region and fitting • Signal region: Remove problematic regions Choose signal region where DM profile relatively unimportant. • Fitting: spatial and spectral fit, treat linear and non linear parameters as nuisance parameters in a profile likelihood fit 26 Results • As tight limits as dwarf analysis, but different (and larger) systematics Fermi-LAT: arXiv: 1205.6474, accepted by ApJ 27 H.E.S.S. Galactic Center Halo • Galactic center is observed anyway • 112 hours of GC observations • Little diffuse background, sensitive to gradients “only” BG Signal 5 deg Signal BG LAT Draco 11 month Abramowski et al, PRL 106 (2011) 161301 28 28 Gamma-ray constraints, present status χχ qq 29 Cherenkov Telescope Array (CTA) • Next generation Air Cherenkov telescope • Increased sensitivity by factor 10 new insights for Dark matter, Cosmic rays etc. etc. • Global consortium: ~25 countries, ~500 scientists • Construction start 2014, *full* operation 2018 24 m 12 m H.E.S.S. 7m 30 Dark Matter scoping study • Right now: optimization of array configuration • DM targets studied: – – – – Galactic Centre Halo Dwarf Galaxies Clusters of Galaxies Spatial signal/Axions arxiv:1208.5356 31 Future Gamma-ray constraints – with CTA 32 ”Detections” GeV WIMPs ~ MeV WIMPs ~ TeV WIMPs ~ 2012! From Bergström, Ann.Phys. (Berlin) 524, (2012) 33 A line in Fermi-LAT data? “If […] true, it would dwarf the Higgs boson discovery,“ Particle Physics blogger Jester • 3.3σ LEE corrected (~50 events) Bringmann+, arXiv:1203.1312 Weniger arXiv:1204.2797 • 5σ LEE corrected, and two lines? Su&Finkbeiner, arXiv:1206.1616 also:Boyarski+, arXiv:1205.4700 Tempel+, arXiv:1205.4882 (4.5σ) Signal 1.5 deg offset 34 First Fermi-LAT line result: 2010 • Based on 11 month of data • Similar analysis method, no optimisation. Fermi-LAT: Phys.Rev.Lett. 104 (2010) 091302 T. Ylinen, PhD Thesis, KTH Stockholm, 2010 Updated to 2 years data in: Fermi-LAT: 1205.2739, Phys.Rev.D. 35 Intriguing details 1: spatial distribution of GC signal Bringmann, Weniger,arXiv:1208.5481 Error bars correct? 36 Intriguing details 2: Galaxy clusters? Hektor+, arXiv:1207.4466v2 18 Galaxy clusters, 5 deg ROI ROI optimisation? Some redistribution going on? 37 What says Fermi-LAT (Fermi symposium, Nov 2, 2012 http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/ A. Albert (Fermi-LAT) • Nada • 2.2σ @135 GeV (P7 data reprocessed shift in energy) • Publication to be submitted by the end of the year 38 However, galactic centre • 3.35σ (local, no look elsewhere effect) A. Albert (Fermi-LAT) 39 But …… limb signal!! Excellent control region for (not only) line searches, expected to be featureless 40 Other control regions: nada! 41 Questions to be answered before booking the trip to Stockholm • Is it instrumental, a fluke or physics? – What is the (sufficiently strong) line signal in the Fermi-LAT Earth Limb emission? – Hard unexpected source at the GC? – Can it be a background contamination, i.e. protons leaking through.? – Can it be a problem in the estimated photon –efficiency ? • If it is physics, is it dark matter? – Why do Su+Finkbeiner find an offset? could be explained incl. Baryons M. Kuhlen+, 1208.4844 – Can it be a non-line spectral feature? it is very line-like – Can other physical processes except DM produce the feature none has come up with a convincing proposal 42 SUSY in trouble? • Light sleptons might still work …… 43 My take on it today …. • The true significance of this result is somehwere between 2.5σ and 5σ so not quite a discovery by particle physics standards. • In favour: the feature fulfills amazingly many properties of a DM induced signal, if analyses taken at face value. • It’s too good to be true, and therefore not true? • Fermi-LAT checks are not conclusive, but there are several detected effects (at the right energy) which could be problematic. • So today, I do (do not) believe it is Dark Matter. 44 Line outlook • More Fermi-LAT data needed on GC and on Limb – multivariate analysis of the signal essentially impossible – Answer to the question, if this can be instrumental within next year (my guess) • If real: 5σ by 2016 (rough estimate) from Fermi-LAT in present exposure conditions. • Competition by HESS II (on line and capable of 5σ within 50 h of GC observation). Bergström, Bertone, JC, Farnier, Weniger , arXiv:1207.6773 , JCAP accepted • GAMMA-400 (2018), DAMPE (China) (2015?) Take a vote! 45 DMA Presentday limit Next generation limit Direct detection cross section (pb) Direct detection, neutrinos (Sun) Complementarity (Direct/Indirect) CTA FERMI pMSSM Some LHC detectable Gamma-ray flux Gamma-rays Bringmann+, Phys.Rev. D83 (2011) 045024 46 Complementarity with LHC Just today 2 papers on the arxiv: Altmannshofer+, Cahill-Rowley+ Below: pMSSM (benchmark from coannihilation region) LHC solution: NOT DM LHC solution: DM Empty contours: LHC only Gaugino masses Excluded with FermiLAT dwarf limit Bertone+,Phys.Rev. D85 (2012) 055014 Filled: Including Fermi dSph Result 47 Final remarks and summary • Gamma-rays are the ”golden probe” for indirect detection. • Most robust gamma-ray WIMP searches ….. – Lower masses: Dwarf spheroidal galaxies: Fermi-LAT – Higher massesGalactic Center halo (H.E.S.S.). • Gamma-ray searches have constrained the benchmark crosssection of ~10-26 cm-3 s, for WIMPs < 30 GeV, with a robust and clean method . • … at the same time yielding ”indications” worth to explore experimentally …. 48 Conclusions con’t • Orthogonality to direct/neutrinos and LHC in the most commonly studied theoretical scenarios (Supersymmetry). – acc: LHC results, direct: Xenon 1t, IceCube results .. • In 2019: CTA/Fermi-LAT constrain thermal WIMP x-sec from 10 GeV – 10 TeV. Endgame for the WIMP? • … unless of course we get lucky … – nature picks a model with large line cross-section Galactic Centre • New players: Gamma-400 (2018), DAMPE (2015), HESSII – nature introduces large enough substructure boost in clusters of galaxies Galactic clusters 49