Immediate Objectives 1. To describe the physical basis for clock retardation experimental results (e.g., particle lifetimes) 2.

Download Report

Transcript Immediate Objectives 1. To describe the physical basis for clock retardation experimental results (e.g., particle lifetimes) 2.

Immediate Objectives
1. To describe the physical basis for clock
retardation experimental results (e.g., particle
lifetimes)
2. To describe the physical basis for length
contraction experimental results (e.g., MichelsonMorley experiment)
3. To explain why Einstein’s theory happens to give
correct results, despite being based on unsupported
postulates
4. Show that 1, 2, and 3 are consistent with the
behavior of fractal particles in the fractal cosmos
19th Century Soups
Tom
Young’s
Aether
Maxwell’s
Choice
Aether
Luminiferous
Ether
Huygens
Aether
Velocity of light
300,000 km/sec
relative to ether
Orbital Speed
30 km/sec
relative to ether
Velocity of light
300,000 km/sec
relative to ether
Aether Soup: Fixed velocity (zero )
relative to ether
v
30 km/s
18.6 miles/sec
1


 4
c 300,000 km/s 186,000 miles/sec 10
2
But t herequired accuracy
1v
1

 
2c
200 million
James Clerk Maxwell Dies
1879
Where’s the soup
Albert Michelson and Edward
C. Morley
1887
No soup detected
George Fitzgerald
1889
Length contraction
Hendrick Antoon Lorentz
1895
Lorentz-Fitzgerald contraction
1904
Lorentz transformation
includes
Length contraction and clock
retardation ( quite detailed )
H.A Lorentz
Something missing
Here for
100 years
Albert Einstein
1905
Psedudo-derivation of Lorentz
transformation
A. Einstein
1905
E= mc2
100th Anniversary of the Paper:
ELECTROMAGNETIC PHENOMENA IN A SYSTEM MOVING WITH
ANY VELOCITY LESS THAN THAT OF LIGHT
By H.A. Lorentz
x  x
t
vx
t    2

c
2
v
  1 2
c
The Fractal Cosmos:
A Galilean Multiverse
GR
QFT
R0  13.7 billion light years 2  1026
R0
c
13.7 billion light years
T0 
 13.7 billion years
1 light year
year
T0 
T0  4  1017 seconds
Substrate of a
Fractal Universe,
Radius = R0
t 0  10- 23 sec
T0
 1040
t0
3D Standing
Wave
 = 4r0
R0
2r0
2r0
2r0

c

c

c

C

c

C

v

v

 
C  c  v
2
v
C  c 1  2
c
C  c 1  
2
Derivation of Clock Retardation

 
c  c  v
v
c  c  v  c 1  
where  
c
P eriodin t hest at ionaryframeis
2

2
2
4r0
t0  
c
c
P eriodin t hemovingframeis
4r0
t 0 
c 1  2
t 0 
t0

Forward- movingwave

c

Rest frame: c
 
Movingframe: c  v

v
Reverse- movingwave

v

Rest frame: c
 
Movingframe: c  v
Derivation of Length Contraction
t0 
tf
2

4r0
tr

2 c 1  2
t f (c  v)  4rx
t r (c  v)  4rx
2rx
2r
4r
1
 x  0
cv cv
c 1  2
2rx
c
 1
1


1  1 
 4r0
1
 
 c 1  2
rx (1    1   )  2r0
 (1   2 )1 

rx  r0 
2 1/ 2 
 (1   ) 
rx  r0 1   2
(1   )(1   )
1  2
Trigonometric Addition of Moving Waves
Forward movingwave :
f
 c  v ; or  f  k (c  v)
k
Reversemovingwave :
r
 c  v ; or  r  k (c  v)
k
Sum of forwardand reversewaves :
  coskx   f t   coskx   r t 
  coskx  k c  v t   coskx  k c  v t 
  coskx  kvt  kct  coskx  kvt  kct
  2 coskctcoskx  kvt
Let k 
 c 
2

; and kc     2 
4rx
 4rx 
T hen,   2 cos t cos
2
x  vt 
4rx
Is Einstein’s Relativity Theory Superfluous?
Einstein special theory of relativity
Step 1. Assumes two principles:
Relativity (indistinguishable reference frames)
Constant speed of light.
Step 2. Derives L-T
Step 3. Physical Meaning Unknown
Fractal mechanics
Step 1. Shows physical basis for clock retardation
Step 2. Shows physical basis for L-F contraction
Step 3. L-T follows for specific measurement methodologies
Step 4. Two principles follow from L-T
Superfluous Vs. Preposterous
Friends, Romans, countrymen, lend me your ears;
I come to bury [Einstein], not to praise him.
The evil that men do lives after them;
The good is oft interred with their bones;
William Shakespeare, “Julius Caesar,” Act 3, Scene 2