THIN LAYERS OF TRANSITION METAL OXIDES Tjipke Hibma Materials Science Centre, University of Groningen, The Netherlands.
Download ReportTranscript THIN LAYERS OF TRANSITION METAL OXIDES Tjipke Hibma Materials Science Centre, University of Groningen, The Netherlands.
THIN LAYERS OF TRANSITION METAL OXIDES Tjipke Hibma Materials Science Centre, University of Groningen, The Netherlands Contents • Introduction to thin film deposition • Atomic layer-by-layer growth - Stoichiometry Surface “chemistry” Epitaxy Morphology Thickness • Manipulation of properties, a few examples Introduction Atomic Layer-by-Layer Growth Ultimate goal: Epitaxial growth of perfect thin layers with atomic precision onto (selected parts of) a single crystalline substrate, in order to manipulate materials properties (or to design ultrathin devices). Introduction Manipulation of materials properties by • Substrate influence enforcement of geometric, magnetic and electronic structure (metastable phases, exchange bias, proximity effects, ..) • Finite size thickness < characteristic length (quantum wells, ballistic transport,..) • Epitaxial strain deformation (bandgap, level splittings) • Artificial stacking new layered compounds or structures (high-Tc, new ferromagnetic(-electric) compounds) Introduction LaCrO3-LaFeO3 Atomic Superlattices K.Ueda, H.Tabata, T. Kawai, Science 280 (1998) 1064 Goodenough-Kanamori rules: Cr3+-O-Fe3+ (d3-d5) 180°-superexchange interaction is Ferromagnetic Thin film deposition Physical Deposition PVD Thermal Chemical Deposition CVD Energetic MBE PLD ALL-MBE ALE UHV PLD most clean and precise deposition techniques SPUTTERING MOCVD LACVD PECVD Thin film deposition Molecular Beam Epitaxy (MBE) Advantages of MBE : • High purity elemental sources • Abrupt interfaces • RHEED growth control • In-situ surface analysis Disadvantages of MBE : • Slow • Sophisticated and expensive UHV equipment • Multi-element rate control difficult Thin film deposition (UHV-) Pulsed Laser Deposition (PLD) Advantages of PLD : • Suitable for complex materials • Fast and flexible • (RHEED growth control) • (In-situ surface analysis) Disadvantages of PLD : • Particulates • Loss of volatile elements • Small area deposition Atomic layer-by-layer growth Growth processes Deposition Main Growth Parameters Desorption Arrival rates Fn Energies En Diffusion Mixing Growth Nucleation Temperature T Atomic layer-by-layer growth Control of Growth MBE Parameters PLD Stoichiometry Relative Flux Fn Difficult for n>2, ALL-MBE Loss of volatile components. Surface “Chemistry” Temperature T Energies En Tsubstrate Tsubstrate thermal <0.1 eV 0.1-10eV (Pback) Epitaxy Substrate RHEED (RHEED) Nucleation rate (lbl growth mode) (Fn/Dn )a Morphology Thickness (nr of layers) Absolute Flux Fn RHEED, ALE # Pulses, (RHEED) Stoichiometry Control Atomic Layer-by-layer MBE (ALL-MBE) (Eckstein and Bosovic, Annu. Rev. Mater. Sci., 25,679,1995) Atomic absorption flux control and computer controlled shuttering of individual K-cell. Stoichiometry Control MBE of Binary Oxides Stoichiometric MnOm excess oxygen Nonstoichiometric MxOy vary FM/FO, determine x afterwards: • Fe3-dO4, Moessbauer Spectroscopy • CrOx , XPS • VOx, TiOx (0.8<x<1.3), 18O-RBS Stoichiometry Control 18O- RBS RBS spectra of 1.8 MeV He+ ions scattered from : 1 6 2 0 0 3 /A l2O 5 1 O 2 7 1 0 0 O O 1 8 0 2 3 0 0 4 0 0 V O 3 I n te n s ity (a r b . u n its ) I n t e n s it y ( a r b .u n it s ) V V A l 5 0 0 6 0 0 7 0 0 B a c k s c a tte r in g e n e r g y (k e V ) V2O3 film on Al2O3 (0001) 200 18 V O 16 220 240 O 18 260 x x capped O uncapped O 280 B a c k s c a tte r in g e n e r g y (k e V ) VOx film on MgO (100) 300 Stoichiometry Control 18O- RBS of VOx 1 .4 x -O x y g e n c o n te n t 1 .3 1 .2 1 .1 1 .0 0 .9 0 .8 0 .7 0 .6 0 .5 0 .4 3 4 3 2 3 0 2 8 2 6 2 4 2 2 2 0 1 8 1 6 1 4 1 2 1 0 O x y g en p ressu re (m V ) 8 Surface “Chemistry” • Elements surface diffusion, nucleation • Binary Oxides diffusing species: M, O, MO ?? • Complex Oxides ????? Epitaxy • Epitaxy = Well-defined orientation relationship between substrate and film lattice. • Coherent epitaxy strain: || f 2 || f 1 (misfit f = Da/a) a||film a||substrate Epitaxy Dislocation formation Energy E → Critical Thickness Strain energy Dislocation energy tc Critical thickness: F IJ G HK b(1 cos2 ) tc tc ln 8 f o (1 ) sin cos b thicknes t → Epitaxy Critical Thickness of CoO/MgO(001) k K k’ Strain in the CoO/MgO 2q Experiment Theory 0.010 2 10000 5 0.008 2 1000 5 2 0.006 100 5 2 10 0.004 5 36.0 0.002 0.000 0 200 400 600 800 Layer thickness (A) 1000 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 (002)- reflections of film and substrate Epitaxy Non-specular diffraction spots coherent growth Reciprocal space K K k k’ 2q Epitaxy Non-specular diffraction spots relaxed growth Reciprocal space K k k’ 2q Morphology The three growth modes “Wetting Criterion” Layer-by-layer b g film int erface erface substrate substrate C ln p / p0 supersaturation favors lbl growth Layer + 3D islands 3D-islands Morphology RHEED MgO(001) Fe3O4/MgO(001) k’ k Morphology RHEED Patterns Reciprocal Reciprocal Lattice Lattice Rods Rods Allowed Reciprocal Lattice Vectors First Order Second Order Perfectly flat surface Reciprocal rods have no width First Order Second Order Surface with monolayer roughness. Broadened rods. Reciprocal lattice points First Order Second Order Surface with large roughness. Transmission features. Morphology Transmission RHEED Pattern TiOx/MgAl2O4(001) vacancy ordered phase Morphology RHEED Oscillations Kinematic diffraction / Step density models Do not explain - phase shifts !!! - in-/out of phase amplitude - damping due to dynamic and incoherent scattering effects) only the ML period is reliable parameter Thickness • in-situ: quartz monitor, RHEED oscillations • ex-situ: X-ray Reflectivity, RBS Intensity (arb units, log. scale) 1 Reflectivity (experiment) Simulation 0 -1 k -2 K k’ -3 2q -4 -5 -6 -7 0 1 2 Theta (degr.) 3 4 Manipulation of properties • Substrate influence enforcement of geometric, magnetic and electronic structure (metastable phases, exchange bias, proximity effects, ..) • Finite size thickness < characteristic length (quantum wells, ballistic transport,..) • Epitaxial strain deformation (bandgap, level splittings) • Artificial stacking new layered compounds or structures (high-Tc, new ferromagnetic(-electric) compounds) Manipulation of properties Transition metal oxides TMO • Substrate influence - new phases, CrOx, TiOx ,Sr(N,O) - Anti-Phase Boundaries, Fe3O4 • Finite size - Electronic structure of NiO - Superparamagnetism in Fe3O4 • Epitaxial strain - MI-transition in VOx - Tetragonal distortion in CoO • Artificial stacking - OFeOFeO non-polar initial phase on Al2O3 - new ferro-magnetic(electric) materials Substrate influence Metastable Chromium Monoxide CrxO (O. Rogojanu) • Chromium monoxide CrO does not exist as a bulk material, but can be grown on cubic substrates as CrxO (0.67<x<1) . • Cr2+/Cr3+ iso-electronic with Mn3+/Mn4+ (d4/d5) SCOO in Cr-oxides ? Substrate influence “Rocksalt”-Cr2O3/MgO(001) (O. Rogojanu, S.Hak) (0 0 4) (-1-1 3) LEED pattern of CrOx/MgO(001) (-2-2 2) Refinement of data collected at ID10,ESRF: 1/3 Cr-sites are vacant (0 0 2) c Areal XRD picture of CrOx/MgO(001). (-1-1 1) z y (-2-2 0) x a b Epitaxial Strain Coherent VOx layers on MgO and STO (002)MgO (004)MgO (002)VOx VO(113) VOx on MgO (aMgO=4.21 Å) tensile strain (004)VOx MgO(113) MgO(113) (002)STO STO(113) (004)STO VO(113) (002)VOx (004)VOx (004)VOx 2Theta-omega scan VOx on STO (aSTO=3.90 Å) compressive strain Epitaxial Strain MI-transition in strained VOx layers (A.D.Rata) SC M MgO (4.213 Å) MgAl2O4 (4.041×2 Å) SrTiO3 (3.903 Å) Epitaxial Strain Compressed metallic VOx shows upturn of and positive MR at low T -3 x = 0 .8 2 1 5 0 2 0 0 R e s is t iv it y ( o h m c m ) 1 0 1 0 -4 1 0 -5 H H 0 5 0 = = 0 T 5 T 1 0 0 T (K ) 2 5 0 3 0 0 Epitaxial Strain eg t2g L=0, S=3/2 dxy dxz,dyz Stretched CoO layer, (MnO)10 (CoO)7(MnO)50/Ag eg t2g L=1, S=3/2 “Bulk” CoO: very small effect dxz,dyz dxy Total electron yield (arb.units) Compressed CoO layer, (CoO)50/Ag (S. Csiszar, M. Haverkort, H. Tjeng) Total electron yield (arb.units) XMLD of strained CoO 1.0 Co 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -0.1 770 L3-edge 775 50ML CoO on Ag T=77K grazing normal difference 780 785 Photon energy h 2.5 2.0 Co L3-edge 1.5 1.0 CoO sandw. on Ag T=77K grazing normal difference 0.5 0.0 -0.5 -1.0 770 775 780 Photon energy h 785 Artificial Stacking Nonpolar [OFeOFeO] stack ? a-Al2O3(0001) Fe3O4 (111) FeO type reciprocal lattice (111) (0,3) (1,1) b* a* End t ~ 105s Start t = 0s Final remarks • The ideal of atomic layer-by-layer growth can be approached using MBE and UHV-PLD techniques. However, • Control of stoichiometry, completeness and structure of atomic layer during growth is still unsatisfactory. • Knowledge of surface “chemistry” is almost fully lacking. • Postgrowth characterisation of composition and structure is a tedious and tough job. Inorganic Thin Layers Group Tjipke Hibma Henk Bruinenberg Wilma Eerenstein Diana Rata Sjoerd Hak Szilard Csiszar MSC-cooperations : Tjeng, Sawatzky (electron spectroscopy) Niesen, Boerma (Moessbauer spectroscopy, RBS) Palstra (transport measurements)