Experimental Status of Pentaquark States Phys.Rev.Lett. 91 (2003) 012002 Introduction Experimental evidence Production mechanisms What do we know about the Q+? Exotic cascades states Special Thanks CLAS Collaborators SPring-8 uudds Mass =
Download ReportTranscript Experimental Status of Pentaquark States Phys.Rev.Lett. 91 (2003) 012002 Introduction Experimental evidence Production mechanisms What do we know about the Q+? Exotic cascades states Special Thanks CLAS Collaborators SPring-8 uudds Mass =
Experimental Status of Pentaquark States Phys.Rev.Lett. 91 (2003) 012002 Introduction Experimental evidence Production mechanisms What do we know about the Q+? Exotic cascades states Special Thanks CLAS Collaborators SPring-8 uudds Mass = 1.54 GeV Elton S. Smith / APS Meeting / Denver May 1-4, 2004 1 Quarks are confined inside colorless hadrons Quarks combine to “neutralize” color force q q q q q Mystery remains: Of the many possibilities for combining quarks with color into colorless hadrons, only two configurations were found, till now… Elton S. Smith APS, Denver May 1-4, 2004 2 What are pentaquarks? Minimum quark content is 4 quarks and 1 antiquark “Exotic” pentaquarks are those where the antiquark has a different flavor than the other 4 quarks qqqqQ Quantum numbers cannot be defined by 3 quarks alone. Example: uudss, non-exotic Baryon number = 1/3 + 1/3 + 1/3 + 1/3 – 1/3 = 1 Strangeness = 0 + 0 + 0 − 1 + 1 = 0 Example: uudds, exotic Baryon number = 1/3 + 1/3 + 1/3 + 1/3 – 1/3 = 1 Strangeness = 0 + 0 + 0 + 0 + 1 = +1 Elton S. Smith APS, Denver May 1-4, 2004 3 Pentaquarks – two approaches Chiral soliton model: (Diakonov, Petrov, Polyakov) Pentaquark comes out naturally from these models as they represent rotational excitations of the soliton [rigid core (q3) surrounded by meson fields (qq)] Quark cluster models, e.g. di-quark description (Jaffe, Wilczek) (ud) L=1 s (ud) Soliton: (simplified) L=1, one unit of orbital angular momentum needed to get J=1/2+ as in cSM Meson fields Lattice QCD => JP = 1/2Elton S. Smith APS, Denver May 1-4, 2004 4 The Anti-decuplet of SU(3)f Ten observations Null Results? X5−− X50 One experiment D. Diakonov, V. Petrov, hep-ph/0310212 Elton S. Smith APS, Denver May 1-4, 2004 (revised version) 5 Experimental Evidence Many experiments No dedicated experiments to date ─ but,… dedicated experiments are starting to take data For new data from SPring-8 see Hicks Session J2 Sun 10:45 Walk through the analysis from CLAS Selected examples from other experiments Elton S. Smith APS, Denver May 1-4, 2004 6 Quark lines for the reaction g us us K+ Q+ n K− ddu ddu n Q+ is composed of (uudds) quarks Elton S. Smith APS, Denver May 1-4, 2004 7 Production mechanisms g n p K+ n (p) K+(K0) Q+ pspec Control Reactions K+ g g n p K− K− S− n p− pspec Elton S. Smith p n APS, Denver K+ K− L*1520 p K− nspec May 1-4, 2004 8 JLab accelerator CEBAF Continuous Electron Beam • Energy 0.8 ─ 5.7 GeV • 200 mA, polarization 75% • 1499 MHz operation • Simultaneous delivery 3 halls Elton S. Smith APS, Denver May 1-4, 2004 9 CEBAF Large Acceptance Spectrometer Torus magnet 6 superconducting coils Electromagnetic calorimeters Lead/scintillator, 1296 photomultipliers Liquid D2 (H2)target + g start counter; e minitorus Drift chambers argon/CO2 gas, 35,000 cells Gas Cherenkov counters e/p separation, 256 PMTs Time-of-flight counters plastic scintillators, 684 photomultipliers Elton S. Smith APS, Denver May 1-4, 2004 10 gd → p K+K─ (n) in CLAS K+ K- p Elton S. Smith APS, Denver May 1-4, 2004 11 Particle identification by time-of-flight m Elton S. Smith APS, Denver May 1-4, 2004 p g c 12 Reaction gd→pK+K-(n) Clear peak at neutron mass. 15% non-pKK events within ±3s of the peak. Almost no background under the neutron peak after event selection with tight timing cut. Reconstructed Neutrons Elton S. Smith APS, Denver May 1-4, 2004 13 Deuterium: nK+ invariant mass distribution Q+ NQ = 43 events Mass = 1.542 GeV < 21 MeV Significance 5.2±0.6 s Two different Background shapes Distribution of L*(1520) events Elton S. Smith APS, Denver May 1-4, 2004 14 Searching for Q+ on a proton target gp→p+K- K+ (n) Prominent K*0 no cuts K*0 M(nK+) [GeV] Elton S. Smith APS, Denver May 1-4, 2004 15 Searching for the Q+ on a proton target gp→p+K-K+(n) Eg = 3 – 5.5 GeV g Cosq*(p+) > 0.8 p− Q+ p 7.8s p+ n Q+ N* K− K+ M=1555±10 MeV < 26 MeV Cosq*(p+) > 0.8 Cosq*(K+) < 0.6 cut CLAS Collaboration PRL 92, 032001-1 (2004). M(nK+) [GeV] Elton S. Smith APS, Denver May 1-4, 2004 16 Q+ ─ N* production mechanism? g cuts outside outside cuts Q+ p− p N* ? N* p+ n Q+ K− K+ What do p-p scattering data say? M(nK+K−) [GeV] Elton S. Smith p-p cross section data in PDG have a gap in the mass range 2.3–2.43 GeV. APS, Denver May 1-4, 2004 17 Diffractive mechanism? K- g K*0 p+ Q+ p Require forward K0* Cos q*(K−p+) > 0.5 Elton S. Smith APS, Denver May 1-4, 2004 18 Q+ NOT produced in association with K*0 K*0 events Non K*0 events Elton S. Smith APS, Denver May 1-4, 2004 19 HERMES e+d→(pKs0) X Airapetian et al. Hep-ph/0312044 27.6 GeV positrons M=1528±3.3 MeV ~ 17±9 MeV Mass (K0p) [GeV] Elton S. Smith APS, Denver May 1-4, 2004 20 New results from COSY-TOF COSY-TOF hep-ex/0403011 pp → S+ K0 p M=1530±5 MeV < 18 MeV s ~ 0.4±0.1 mb 2.95 GeV M(K0p) GeV/c2 The TOF spectrometer at the COSY facility in Juelich, Germany found evidence for the Q+ in the reaction: p + p → S+ + Q+. Elton S. Smith APS, Denver May 1-4, 2004 21 From ZEUS at DESY… ZEUS hep-ex/0403051 ep →eKs0p X M=1521.5±1.5 MeV ~ 8±4 MeV √s ~ 310 GeV Q2 > 20 GeV2 Mass (K0p) [GeV] Elton S. Smith APS, Denver May 1-4, 2004 22 What do we know about this S=+1 state? 1.57 Mass (GeV) 1.56 1.55 LEPS : gC→(nK+) K−X DIANA : K+Xe→(pK0) X CLAS-d : gd→(nK+) K−p CLAS-p : gp→(nK+) p+K− SAPHIR : gp→(nK+) K0 1.54 ITEP : n d,Ne→(pK0) K0 1.53 HERMES : e+d→(pK0) X 1.52 COSY-TOF: pp→(pK0) S+ 1.51 0 10 20 Upper limit or estimate of (GeV) Elton S. Smith ZEUS : ep→e (pK0) X SVD-2 : pA→(pK0) X 30 ( ) Strangeness undetermined Decay products in parenthesis APS, Denver May 1-4, 2004 23 Search for pentaquarks in HERA-B HERA-B hep-ex/0403020 L*(1520) Q+ ? M(pK0s) (GeV) M(pK−) (GeV) pA →K0p X Null result at HERA-B Q+(1540) √s ~ 41.6 GeV L*(1520) Elton S. Smith APS, Denver < 0.02 May 1-4, 2004 24 There is much more to learn Spin, parity ─ Chiral soliton model predicts Jp=½+ (p-wave) ─ Quark model naïve expectation is Jp=½− (s-wave) ─ Lattice calculations predict Jp=½− Isospin ─ Likely I=0, since searches for pK+ partners unsuccessful Width (lifetime) ─ Measurements mostly limited by experimental resolution. ─ Theoretical problem remains why the state is so narrow. ─ Analysis of existing K+d scattering data indicate that < 1-2 MeV. Complete determination of the pentaquark multiplet Elton S. Smith APS, Denver May 1-4, 2004 25 A new cousin: observation of exotic X5−− X5−− ssd du M=1.862± 0.002 GeV ssddu X50 ssd ud Q+ X(1530) ssd ud X5−− X5 0 ssd du NA49 CERN SPS Phys. Rev. Lett. 92 (2004) 042003 Elton S. Smith APS, Denver May 1-4, 2004 26 But, can it be reproduced?? HERA-B hep-ex/0403020 X(1530) X−p+ + X+p− X−p− + X+p+ Mass (GeV/c2) HERA-B collaboration at DESY (Germany) Null result with much higher statistics! They also have a null result for the Q+ Elton S. Smith APS, Denver May 1-4, 2004 27 Predictions depend on dynamics Decay modes are sensitive to dynamical picture Number of states and mass spectra Ss X X5 Ns X5 BR(X5 → K− S−) BR(X5 → p− X−) S N LS Q BR(X5 → p0 X−) BR(X5 → p− X0) Q N Di-quark Soliton Note: Models adjusted to experiment Elton S. Smith APS, Denver May 1-4, 2004 28 Search for exotic cascades X5−− and X5− Experiment 04-10, scheduled to run this fall X −− → p− X− L → p− p X − → p− L Electron beam gn→K+K+X5−− X− ct = 4.9 cm L ct = 7.9 cm Two decay vertices, Negatives bend outwards Elton S. Smith APS, Denver May 1-4, 2004 <g> ~ 1.5 29 Current activities at Jlab Pentaquark experiments in Hall B ─ g10 (currently taking data) gd → Q+ Eg~1 – 3.5 GeV ─ g11 (starts in mid-May) gp → Q+ Eg~1 – 3.5 GeV ─ eg3 (November) gvd→ X5−−, X5− Eg> 3.9 GeV ─ High energy data gp → Q+, X5 Eg~1.5 – 5.4 GeV Pentaquark experiment in Hall A ─ E04-012 (May), search for excited Q++ and Q0 states. Elton S. Smith APS, Denver May 1-4, 2004 30 Summary A key question in non-perturbative QCD is the structure of hadrons. We have reviewed the evidence for the existence of a new class of colorless hadrons with quantum numbers which cannot be generated from solely three quarks: ─ There is substantial corroborating evidence for an exotic baryon with S = +1, which would have a minimal quark content of (uudds). ─ The observation of a doubly negative S=−2 baryon (ddssu) is consistent with a second corner of the anti-decuplet the family of pentaquarks, but needs additional confirmation. Dedicated experiments are being mounted which should easily establish (or refute) the observations to date. Elton S. Smith APS, Denver May 1-4, 2004 31