Mitochondrial Control of Leydig Cell Steroidogenesis Dale Buchanan Hales, PhD University of Illinois at Chicago Department of Physiology and Biophysics.

Download Report

Transcript Mitochondrial Control of Leydig Cell Steroidogenesis Dale Buchanan Hales, PhD University of Illinois at Chicago Department of Physiology and Biophysics.

Mitochondrial Control of
Leydig Cell Steroidogenesis
Dale Buchanan Hales, PhD
University of Illinois at Chicago
Department of Physiology and Biophysics
Cross section of rat testis
Showing Seminiferous
Tubules and Interstitium
where Leydig cells reside
Kent Christensen, Univ. Michigan
Interstitium of rat testis
showing endothelium,
Leydig cells (L), and
macrophages (arrow).
Note close association of
macrophages and
Leydig cells.
Scott Miller, Univ Utah
Close association of
Leydig cell and
macrophage, lower panel
shows close up of
“digitation” of Leydig cell
process extending onto
macrophage surface.
Scott Miller, Univ. Utah
Macrophage-Leydig cell interactions
Cytokines, ROS
?
Extracellular
lipoprotein
Cholesterol
pool
cholesterol
PKA+
ATP
cAMP
Pregnenolone
DYm
3bHSD
ATP
transcription
acetate
LH
Progesterone
P450c17
Androstenedione
17bHSD
TESTOSTERONE
Mitochondrial vs. Nuclear
control of steroidogenesis
cAMP
ROS/mitochondrial
disruptors
-
Acute
regulation at
the level of
substrate
availability
+
PKA
Cytokines
PKC agonists
+
+
testosterone
mitochondrial
-
Chronic
regulation at
the level of
gene
transcription
nuclear
Effect of LPS on steroidogenic mRNA levels
P450scc
P450c17
3b-HSD
actin
LPS
- + - + - + - +
time
2h
4h 6h
- +
8h 24h
Effect of LPS on P450c17 protein
levels 2 and 24 h post injection
control LPS contro LPS
l
2 hours 24 hours
LPS vs. serum testosterone: 2-24 hours
control
LPS
14
Testosterone (ng/ml)
12
10
8
6
4
2
0
2h
4h 6h
8 h 24 h
Time post LPS
LPS vs. StAR protein
expression: 2 hr after injection
37 kDa
30 kDa
LPS vs. StAR mRNA expression
Steroidogenic Acute
Regulatory Protein: StAR
• Essential for steroid hormone biosynthesis
• Cyclic-AMP dependent expression
• Facilitates cholesterol transfer across innermitochondrial (aqueous) space
• Translated as a 37 kDa precursor protein that
is processed to the 30 kDa mature form as it
translocates into the mitochondria
• Cholesterol transport activity depends on
intact DYm
StAR facilitates cholesterol transfer
37
StAR Processing
32
30
Inner-mitochondrial
forms
Cytosol
37 kDa
N'
signal peptides
cholesterol transfer
critical region
Outer mitochondrial membrane
Inner- mitochondrial membrane
N'
32 kDa
matrix
N'
30 kDa
Time course of StAR decay
density
Time course of StAR decay
100000
80000
30 kDa
60000
40000
32 kDa
37 kDa
20000
0
0
15
30
45
60
minutes
75
90
105
120
StAR
chol
adx
Mitochondrial
matrix
Adx-red
scc
chol
Cytosol
PBR
chol
3bHSD
N’
StAR
C’
?
TOM
TIM
PBR
Cytosol
VDAC
ANT
Mitochondrial
matrix
CphD
CK
HK
StAR N-terminal localization
expression clones
MTS
1-37
ITS
38-47
pCMV-StAR
TAA
StAR-stop
MTS
1-37
Tom20
OMTS
StAR D-ITS
StAR D-N47
StAR/Tom20
CCHL
IMSS
StAR/CCHL
What mediates the acute LPS
inhibition?
• Tested numerous inflammatory mediators in
Leydig cells in vitro-- none mimicked the acute
LPS “effect”
– cytokines (TNFa, IL-1, IL-6, IFNg, TGFb)
– prostaglandins (PGF2a, PGE)
– catecholamines (norepi, isoproteranol)
LPS vs. StAR protein
expression: 2 hr after injection
37 kDa
30 kDa
Carbonyl cyanide mchlorophenylhydrazone (cccp)
• Carbonyl cyanide m-chlorophenylhydrazone (cccp): potent uncoupler
of oxidative phosphorylation;
protonophore, mitochondrial
disrupter.
• Causes transient disruption of DYm
Mitochondrial respiration, OX-PHOS and DYm
H+
DYm
e-
Effect of CCCP on StAR protein
37
kDa
30
kDa
Control
cAMP
cAMP + cccp cccp
Effect of CCCP on StAR mRNA
3.4 kB
2.9 kB
StAR
1.6 kB
cyclophilin
con cA cA+cccp
Effect of CCCP on StAR synthesis
37kDa
30kDa
Control
cAMP
cccp
cAMP + cccp
Tetramethylrhodamine
Ethyl Ester (TMRE)
• Tetramethylrhodamine
Ethyl Ester (TMRE):
Uptake is dependent on DYm.
Rapidly and reversibly taken
up by allowing dynamic
measurement of membrane
potential by fluorescent
microscopy and flow
cytometry.
CCCP disrupts DYm in MA10s
control
CCCP-treated
Effect of mitochondrial agents
on progesterone production
1000
900
800
ng/ml
700
600
500
400
300
200
100
0
con
cAMP
+Oligom +arsen
+CCCP
Effect of mitochondrial agents
on StAR protein expression
37 kDa
30 kDa
Effect of mitochondrial agents
on StAR mRNA expression
3.2 kB
StAR
1.6 kB
cyclophilin
Effect of H2O2 on StAR protein
4000
3000
2000
1000
0
Effect of H2O2 on StAR mRNA
Northern Blot
StAR mRNA
Contr.
cAMP.
Cyclophilin mRNA
100
200
250
500
Effect of H2O2 on P450scc protein
5000
4000
3000
2000
1000
0
Effect of xanthine/xanthine
oxidase on StAR protein
Effect of xanthine/xanthine
oxidase on StAR forms
2500
2000
1500
30+32 kDa
1000
37 kDa
b
500
a
a
b a
b
b
0
con.
cAMP
+10
+50
+100
37/30+30 kDa StAR
cAMP + Xanthine Ox. (mU)
IOD Ratio
IOD StAR
cAMP + Xanthine Ox. (mU)
a
a
12
a
10
8
6
a
b
bb a
cAMP
+10
4
2
0
con.
a
b
+50
+100
cAMP + Xanthine Ox. (mU)
TMRE staining of MA-10 cells
exposed to H2O2—time lapse
Do reactive oxygen species
(ROS) mediated the acute
inhbitory effects of LPS?
• Testicular Macrophages are known to
produce ROS when activated
• ROS are produced rapidly after exposure to
LPS
• Many potential sources of ROS in testicular
interstitium
LPS inhibits Leydig cells in vivo via ROS
MDA + HNE (uM/10e6 LC)
Increased lipid
peroxidation and
depolarization of Leydig
cell mitochondria support
involvement of ROS in
LPS action in vivo
Lipid peroxides
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
control
LPS
What is the Dym-sensitive
component of steroidogenesis?
• Protein import into matrix is Dymdependent– but likely not responsible for
inhibition of StAR
• PBR?
• Perturbation of intra-mitochondrial Ca2+
and/or ATP levels?
Ca2+ transport systems in
mitochondria
Ruthinium Red
H+
e-
Ca2+ uniporter (U) facilitates the transport of Ca2+ inward down the
electrochemical gradient.
Ca2+ activated permeability transition pore (PTP) also is shown
Potential role for mitochondrial Ca2+
IOD
Ru360 is a cell
permeable
derivative
Con cAMP
+H202
+5 on StAR
+10 Proteinof Ruthinium
Effects
of Ru360
Red-- a specific
uM Ru360
Mitochondrial
150
Ca2+ uptake
blocker
100
50
0
Con cAMP +H202
+5
+10
uM Ru360
CCCP disrupts DYm in MA10s
control
CCCP-treated
Excitation/Emission Spectra:
Control vs. CCCP
350000
548
300000
250000
200000
576
150000
100000
50000
0
500
520
540
nm
560
580
Excitation/Emission Difference
Spectra
difference 548-573
fluoresence intensity
60000
40000
20000
0
-20000
500
550
-40000
-60000
-80000
-100000
nm
Time-based dual emission
spectra
Fluorescence intensity
450000
400000
350000
300000
250000
200000
150000
100000
0
100
200
300
400
seconds
500
600
700
800
Ratiometric Fluorometry:
Estimation of DYm
Ratio 575/549
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0
100
200
300
400
seconds
500
600
700
800
Sites in the electron transport
chain that inhibitors act
Determination of NADH/NAD+ ratio
fluorescence
150000
130000
5 uMCCCP
110000
90000
70000
5mM CN- 15mM CN1mM CN-
50000
30000
0
100
200
300
400
seconds
500
600
Effect of cAMP and Antimycin A on
DYm
Dym ratio
2
ratio
1.5
1
0.5
0
Control
cAMP
cAMP +
Antimycin
Effect of cAMP and Antimycin A on
NADH/NAD+
NADH/NAD ratio
ratio
1.2
1.19
1.18
1.17
1.16
1.15
1.14
1.13
Control
cAMP
cAMP + Antimycin
StAR
37 kDa Star
c l
+a AM
nt P
im
yc
+C in
C
C
+H P
+o 2
lig O2
om
+c ycin
ya
ni
de
30 kDa Star
co
nt
ro
IOD
Effect of mito
compounds
on StAR
9000
8000
7000
6000
5000
4000
3000
2000
1000
0
StAR
P450scc
Con
cAMP
+AA
+CCCP
+H202
+oligo
+CN
M
P
+a
nt
im
yc
in
+C
C
C
P
+H
2O
+o
2
lig
om
yc
in
+c
ya
ni
de
co
50
cA
P450scc
1600
1400
1200
1000
800
600
400
200
0
nt
ro
l
30
IOD
37
Steroidogenic machinery
Sites of immune inhibition
ROS
Hales Lab
Fred Lepore
Neil Iyengar
Tristan Shankara
Marika Wrzosek
John Allen
Thorsten Diemer
Paul Janus
Steinunn Thorardottir
Karen Held Hales
NIH: HD25271 HD35544
Collaborators
Judy Bolton—UIC
Colin Jefcoate—UW Madison
Jean-Guy Lehoux—Sherbrooke
Yossi Orly—Hebrew Univ
Anita Payne—Stanford
Mariann Piano—UIC
Catherine Rivier—Salk Inst
Douglas Stocco—Texas Tech
Gregory Thatcher—UIC
StAR
oxidative stress
alcohol
steroidogenesis
“It takes balls to work
on Leydig cells”
Anita Payne circa 1984