PH-ESE seminar, CERN, 02.06.2013 Universal Picosecond Timing System developed for the Facility for Antiproton and Ion Research (FAIR) Dr.-Ing. Michael Bousonville GSI 2005 – 2010 DESY 2010 –

Download Report

Transcript PH-ESE seminar, CERN, 02.06.2013 Universal Picosecond Timing System developed for the Facility for Antiproton and Ion Research (FAIR) Dr.-Ing. Michael Bousonville GSI 2005 – 2010 DESY 2010 –

PH-ESE seminar, CERN, 02.06.2013
Universal Picosecond Timing System
developed for the
Facility for Antiproton and Ion Research
(FAIR)
Dr.-Ing.
Michael Bousonville
GSI 2005 – 2010
DESY 2010 – today
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 1
Overview
• Fundamental Concepts of Timing Systems
– In General
– The 4 Concepts
– Comparison
• Universal Picosecond Timing System for FAIR
– Design
– Performance
– Prospects
• Current Status of the System in FAIR
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 2
Fundamental Concepts of Timing Systems
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 3
Fundamental Concepts of Timing Systems
In General
all timing systems do the following:
From a
Master
Oscillator
a signal with fM and
φM
jM
will be transmitted
to 2 or more
reference points:
Reference
Point 1
Reference
Point 2
φ1
φ2
f1
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
f2
j1
Page 4
j2
f: frequency
φ: average phase
j: phase jitter
Fundamental Concepts of Timing Systems
In General
the theoretical ideal case is:
Master
Oscillator
fM = f 1 = f 2
fM and
φM = φ 1 = φ2
jM = j 1 = j2 = 0
and in real systems we have
fM = f1 = f2 can be assumed as fulfilled
φM ≠ φ 1 ≠ φ 2 ≠ φ M
Reference
Point 2
φ1
φ2
f1
Jitter > 0
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Reference
Point 1
Page 5
j1
f2
j2
φM
jM
Fundamental Concepts of Timing Systems
In General
the optimization is about:
Master
Oscillator
a)Long term drift
fM and
|φ1 - φ2| should be as constant as possible
b)Short term jitter
should be as low as possible
Reference
Point 1
Reference
Point 2
φ1
φ2
j1
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 6
j2
φM
jM
Fundamental Concepts of Timing Systems
Long term drift
The change of phase offset between 2
reference points in average over time
Master
Oscillator
fM and
Here are 2 approaches pursued
1. |φ1 - φ2| ≈ constant
Good for CW applications
2. φ1 ≈ φ2
Needed for processes that
starts at a precise moment
simultaneously
Reasons for phase change
Reference
Point 2
φ1
φ2
j1
1. Change of transmission delays
2. Change of fM
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Reference
Point 1
Page 7
j2
φM
jM
Fundamental Concepts of Timing Systems
Measures against long term drift
1. Keep delays stable
Master
Oscillator
a) Passively:
fM and
Phase stable components
Temperature stabilisation of
transmission system
b) Actively:
Measure and control the delay in
the transmission system by a
i. measurement instrument
ii. delay unit
Reference
Point 2
φ1
φ2
j1
2. Keep frequency stable: GPS connection
3. Often a combination of these measures is
used
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Reference
Point 1
Page 8
j2
φM
jM
Fundamental Concepts of Timing Systems
Short term jitter
All systems try to minimize the jitter.
Master
Oscillator
Jitter → min
fM and
Reasons for Jitter
1.Jitter of master oscillator
2.Additive noise due to signal
transmission
3.Signal Interference (EMI)
Reference
Point 1
Reference
Point 2
φ1
φ2
j1
Countermeasures
→ Keep the reasons 1 to 3 low
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 9
j2
φM
jM
Fundamental Concepts of Timing Systems
Transmission Medium
Since 1986 a trend can be observed to use standard single mode fibres
(SMF) instead of coaxial cables for signal transmission. The advantages of
SMFs are:
1.Very low attenuation of 0.2 dB/km @ 1550 nm
2.Insensitive against electromagnetic disturbance
3.Low dispersion of 17 ps/(km·nm) @ 1550 nm
4.SMF in loose tube cables show a moderate TCD < 50 ps/(km·K)
5.Favourable price of 1 €/m
6.Standard component  good availability
In the following, only systems with SMF will be considered.
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 10
Fundamental Concepts of Timing Systems
Concept 1: Classic
1. E. Peschardt and J.P.H. Sladen – 1986
2. First systems using SMF
3. High optical attenuation of ca. 15 dB in both ways  SNR  Jitter
Circulator
Master
Oscillator
Tx
Splitter
Receiver
Receiver
Phasen Comparator
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 11
Transmission
Fibre
Reflector
Phase
Shifter
Splitter
Control
Receiver
Reference
Signal
Fundamental Concepts of Timing Systems
Concept 2: Low Losses
1. T. Naito et. al. – 1999
2. First time WDM is used
 Problem of high optical losses in concept 1 is reduced form 15 to 3 dB
Master
Oscillator
Transmitter
Transmission
Fibre
1.3mm
Multiplexer
1.3mm
Phase
Shifter
Multiplexer
1.5mm
Phasen
Comparator
Receiver
Receiver
1.5mm
Control
Transmitter
Splitter
Reference signal
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 12
Fundamental Concepts of Timing Systems
Concept 3: Laser Based Synchronisation
1. H. Schlarb, A. Winter, F. Kärtner – 2005
2. More optical components
A laser is the master oscillator  Short term jitter < 10 fs
Properties at DESY: pulse width ≈ 200 fs; repetition rate 1.3 GHz/6 ≈ 216.7 MHz
Optical correlator for measuring the delay changes
Optical
Pulse Train
Link Stabilisation Unit
Master
Laser
Oscillator
Phase
Shifter
FRM
Stabilized
Pulse Train
=
Reference
Signal
Pulse Laser
Master
RF
Oscillator
Optical
Correlator
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Control
Page 13
Application
Synchronization-Hutch
Fundamental Concepts of Timing Systems
Optical Table
Racks
Master Laser
Oscillator
Free Space
Distribution
Concept 3 at XFEL
Link
Box
Link
Box
Link
Box
Applications
1. Bunch Arrival Time Measurements
Air Conditioning System
Measurement Equipment
2. Laser-to-Laser Synchronization
Fibre Cabling
Synchronising of other pulse lasers
Peripheral Devices
3. Laser-to-RF conversion
Stabilizing the 1.3 GHz RF with the help of
the optical reference signal
Link End
Link End
Link End
Bunch Arrival
Time Monitor
Laser-to-Laser
Synchronization
Laser-to-RF
Conversion
Diagnostic
Photo Injector
Laser
 Cavity synchronisation
Applications
separate
CDRs
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 14
Gun, Cavities
Fundamental Concepts of Timing Systems
Synchronisation Hutch
From here the Reference
Signal will be distributed
Concept 3 at XFEL
XFEL –Nomenklatur
29.09.2004
ZM1 – Jähnke
/ Stoye
Injector
Laser
SASE positions by Tobias Hass
26.4.2011
Seed Laser
Laser to RF Conversion
Bunch Arrival Time Monitors
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 15
Pump Probe Laser
Fundamental Concepts of Timing Systems
Concept 4: Phase Synchronous References
1. M. Bousonville – 2008
2. For Concept 1 to 3 it is sufficient to measure only the delay changes and
keep the delays stable by a control loop
 |φ1 - φ2| ≈ constant, but the difference is not know
3. In concept 4 the phases should be equalized, therefore not only the delay
change, but also the absolute delay have to be measured and the phases
adjusted
 φ1 ≈ φ2
4. This is necessary for starting processes synchronously
5. Systems with this functionality
a) White Rabbit → PH-ESE Electronics Seminars 14 May 2013
b) Universal Picosecond Timing System → will be discussed in detail
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 16
Fundamental Concepts of Timing Systems
Comparison
Concept
Approach
Reference
Applications
1. Classic
|φ1 - φ2| ≈ constant
RF
RF Distribution
2. Low Losses
|φ1 - φ2| ≈ constant
RF
RF Distribution
3. LB Sync
|φ1 - φ2| ≈ constant
Optical
pulse train
Bunch Arrival Time Measurements
Laser-to-laser Synchronisation
Laser-to-RF conversion
4. Phase
Sync.
φ1 ≈ φ2
Absolute
time
Starting processes synchronously
RF Distribution
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 17
Universal Picosecond Timing System
for FAIR
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 18
Overview
• Introduction
– Motivation
– Design Goal
– Reference Time
• System Design
–
–
–
–
•
•
•
•
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Basic Principle
Optical Network
Delay Measurement Unit
Reference Generator
Performance
Prospects
Innovations
Summary
Page 19
Introduction
Motivation
500 m
• Cavity synchronisation
 signal generation (DDS) synchronisation
Ref
signal generator
f, 
central
clock
Ref
Ref
Ref
cavity
Ref
CC
• Therefore necessary:
– Distribution of
phase synchronous reference signals
Ref
• Problems:
– Different distances
 different time delays
– Time delays ≠ constant
Ref
t = f ( L,T,...) = f ( t )
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
reference
generator
Page 20
Ref
Introduction
tolerance
Design Goal
Phase synchronisation
central
clock
φSys
reference
generator 1
transmission unit
φRef
Δμ
reference
generator 2
φ
2.5σ
φRef
Crucial: Accuracy between the reference phases
  5  514ps
Accuracy requirement: 1° at 5.4 MHz
Optimisation Parameters:
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 21
Δμ↓ and σ↓
Introduction
Reference Time
Reference Signal 1
Reference Signal 2
t
t0 + n × TRef ,2
System Clocks
Reference Signals
f Sys ,1  200 MHz
f Ref ,1  50 MHz
f Sys ,2



 97.7 kHz 

f Sys ,2  f Ref,2 
f Ref ,2  97.7 kHz
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 22
f Sys ,1
211

f Ref ,1
29
Introduction
Starting Points
Command data acceptance windows
TRef,1
Reference Signal 1
TRef,2
Reference Signal 2
Starting Points for Command Execution
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 23
System Design
Basic Principle
Assembly of one system branch
transmission
unit
φSys
transmission
medium
φSys+φ(τ)
reference
generator
φRef
signal
generator
cavity
τ
delay
measurement unit
 Ref  f  Sys   f  
Any delay variation can be compensated
 absolute delay drift irrelevant
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 24
System Design
Basic Principle
Star-shaped distribution
transmission
unit
φSys
transmission
transmission
transmission
φSys+φ(τ1)
reference generator
φSys+φ(τ2)
reference generator
φSys+φ(τN)
reference generator
φRef
φRef
φRef
τn
delay measurement
unit
One instead of N transmission units
 no different time drifts
One instead of N measurement units
 systematic error irrelevant
 much less effort
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 25
signal generator
cavity
signal generator
cavity
signal generator
cavity
System Design
Subtasks and Interfaces
 Sys ,1
Interface 2
 Sys ,1   ( )
Interface 3
 Ref ,1  f (Sys ,1 )  f ( )
 Sys ,2
 Sys ,2   ( )
 Ref ,2  f (Sys ,2 )  f ( )
Interface 1

central
clock
transmission
of
system clocks
generation of
reference signals
signal generator
delay
measurement
asynchronous
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
synchronous
Page 26
System Design
Way of Proceeding the Development
1. Identification and investigation of the most important system parameters
-
Noise ↓
-
Crosstalk ↓
-
Unwanted reflections ↓
-
Velocity of signal delay change ↓
 Jitter ↓
 Measurement error ↓
 Synchronisation error ↓
2. System design
-
Choice of technologies
-
Development of an measurement method
-
System modelling for theoretical calculation and optimization of the system parameters
-
Planning of the prototype (80k€ total budget  cost pressure)
3. Realisation of the prototype
4. Verification of the theoretical calculations in practice
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 27
System Design
Optical Network
Configuration of one transmission branch
Sys. Clock 1
Sys. Clock 2
Tx 1
Tx 2
λ1
λ2
multiplexer
λ1, λ2
Add/Drop
transmission
fibre
λ1, λ2, λM
λ1
λM
FBG
IN
OUT
λ1, λ2
demultiplexer
λ2
Rx 1
Sys. Clock 1
Rx 2
Sys. Clock 2
ADD
transmission unit
receiver unit
circulator
λM
λM
Tx
I1
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Rx
measurement unit
Page 28
I2
System Design
Optical Network – Advantages of DWDM
→ very good channel separation > 100 dBele
→ attenuation only 4 dBopt
 optical power at all receivers ≈ 0 dBm
Measurement channel (Rayleigh-Noise)
-80
Power density [dB/Hz]
Relative noise power
density [dB/Hz]
All channels
operating point
-100
-120
sum
shot
-140
RIN
-160
receiver
-180
-40
-30
-20
-10
0
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
measurement signal
-105
-110
calculated
-115
-120
measured
-125
0
10
Optical input power of the receiver [dBm]
SNR  B  1GHz   54.1dBele
-100
5
10
15
20
25
f [MHz]
SNR  B  10Hz   90.6dBele
Page 29

σMess,Trans  0.0012
System Design
Optical Network
Star-shaped distribution
transmission
unit
optical amplifier
splitter
gain = M x 3dB
2M
1x
Add/Drop
receiver unit 1
Add/Drop
receiver unit 2
Add/Drop
receiver unit N
distribution
optical
switch
measurement
unit
I2
I1
reflector (permanent calibration)
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 30
System Design
Noise power density [dB/Hz]
Optical Network – EDFA
-130
operating point
approximately :
 EDFA 
sum
-140
RIN
-150
SNR  53.9dBele 

 ü  74.6dBele 
receiver
shot
-160
EDFA
-170
-20
-15
-10
-5
0

 Sys ,Trans  322 fs
→ Signal quality almost not effected
5
10
Optical input power of the EDFA per channel [dBm]
Optimisation Parameter:
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
1
Pin
σ = f (σSys,Trans)
Page 31

ok
System Design
Optical Network - Prototype
laser
multiplexer
mirrors
splitter
modulators
network
analyser
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
switch
Page 32
System Design
Measurement Unit
λ1, λ2
Add/Drop
OUT
ADD
FM   f M 1 , f M 2 , ... , f MN 
circulator

 M   M 1 ,  M 2 , ... ,  MN 
boundary condition :
 accuracy 
  f  M 

1
f M ,min
1
λM
 2
λM
Tx
Rx
phase
measurement
accuracy

f M ,max 2  360
fM
 accuracy  0,4

FM   50kHz, 500kHz, 50MHz, 6GHz
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville

τ accuracy 
Page 33
λM
FBG
IN
Delay determination via phase measurement
λ1, λ2, λM
transmission
fibre
1
0,4

 92.6 fs
6GHz 2  360
System Design
Not Measurable Delay Changes
Add/Drop
IN
transmission
fibre
λ1, λ2, λM
λ1
λM
FBG
λ1, λ2
OUT
Demultiplexer
λ2
Rx 1
System Clock 1
Rx 2
System Clock 2
ADD
delay measurement at
operation not possible
I2
Error < 2.5 ps per branch  synchronisation error: ΔtSys,G < 5 ps
Optimisation Parameter: Δμ = f (ΔtSys,G)
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 34
 ok
System Design
Reference Generator
phase
correction

delay
measurement
Kor = f ()
command data
Sys,1
central
clock
Sys,2
Sys,1 + ()
fibre
Sys,2 + ()
Kor,1
DDS1
Ref,1
Update
Kor,2
DDS2
Ref,2
Update
reference generator
I1
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
I2
I3
Page 35
signal generator
Cavity
System Design
phase tuning word  φKor
reset
DDS
phase accumulator
phase shifter
´2
frequency tuning word
 fRef
+
mod 2
M Akku
M Akku -M Off
phase
register
+
mod 2
M Akku
z -1
system clock 1
´
phase accumulator
2
DDS (n)
2p
M
2 Akku
x(n)
DDS (n)
x(n)
x(t)
2 M Akku
2
a
a
0
0
8
n
x(t) = reference signal
digital to analogue
converter
phase shifter
DDS,Off = /2
M Akku
phase to amplitude
converter
0
8
n
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
0
Page 36
8
n
8
n
0
T
t
System Design
Reference Generator
Reference Signal Generation via DDS principle
1. No phase adjustment limit (in contrast to other methods)
2. Resolution tS = 1.22 ps
3. Accuracy tG < 7.5 ps
4. Jitter σRG = 7.56 ps
Martin Kumm.
Integrated DDS: AD9854 - CMOS 300 MSPS Quadrature Complete DDS.
  tS  2tG  tSys,G  21.2 ps
2
2
   Sys
,Trans   RG  7.57 ps
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 37
Performance
Test of the whole System
-
Two Reference Points
-
Distance from central clock ≥ 1 km each
-
Average interval 1 s
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 38
Measurement: Δμ < 15 ps
Performance
Accuracy of the Reference Time
Mean time deviation
ü
ïï
tS = 1.22 psý
ï
tG < 7.5 ps ïþ
Time fluctuation (Jitter)
DtSys,G < 5 ps
 Sys ,Trans  0.322 ps 
Þ Dm < 21.2 ps

 RG  7.56 ps 
   7.57 ps
Comparison with specification
  5  59.1 ps  514 ps
 one order of magnitude better than required
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 39
Innovations
1. Two phase synchronous Reference Signals will be provided
 universal time information
-> Different RF can be derived
-> Also RF ramps with adjustable offsets
-> Other processes can be started synchronously
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 40
Innovations
2. Optical Dense Wavelength Division Multiplex (DWDM)
 separate optical measurement channel
 high precision measurement
 transmission of several independent System Clocks
 very low transmission loss
3. Only one measurement unit with permanent calibration
 systematic error irrelevant
 cost-cutting
4. Direct Digital Synthesis (DDS) for generation of the Reference Time
 unlimited phase shift of the Reference Signals
 still the Reference Time can be adjusted in small intervals (1.22 ps)
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 41
Prospects
Measures to Improve the Performance
Example:
1. Higher frequencies
fSys,1 = 1 GHz
fRef,1 = 250 MHz
2. Use of other DDS unit types
3. Temperature stabilisation
DDS units
receiver units
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville

σRG ≈ 250 fs

tS = 61 fs
 tG ↓
 ΔtSys,G ↓
Page 42
 σ < 1 ps
 Δμ << 21.2 ps
Summary
1. Development of a system for distribution of a Reference Time
Reference Time consists of 2 Reference Signals
These Reference Signals will be provided phase synchronously at different points
The signal generators of the cavities will be synchronised with these Reference Signals
2. System
Optical Network
Measurement Unit
Reference Generators
→ completely prototype created
3. Accuracy of the Reference Time
Mean Deviation
Δμ < 21.2 ps
Jitter
σ = 7.57 ps
 Requirements fulfilled
→ results verified at the prototype
4. Significant improvement of the performance is possible
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 43
Acknowledgements
Prof. Dr.-Ing. Peter Meißner, Dr.-Ing. Matthias Gunkel, Dipl.-Ing. Martin Kumm and
Dr. Claudius Peschke
Ruth Maria Bousonville, Dipl.-Ing. Jacqueline Rausch and Dr.-Ing. Harald Klingbeil
Dipl.-Ing. Enno Liess and Dr. habil. Peter Hülsmann
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 44
Publications
•
„RF Reference Signal Distribution System for FAIR”, EPAC, Genoa, 2008.
Contributed talk
•
„Universal Picosecond Timing System for the Facility for Antiproton and Ion
Research”, Physical Review Special Topics - Accelerators and Beams, 2009.
•
„Optische Übertragung phasensynchroner Taktsignale unter Verwendung des
Wellenlängen-Multiplex-Verfahrens“, Dissertation, Technische Universität
Darmstadt, 2009. http://tuprints.ulb.tu-darmstadt.de/1382/
•
„GSI entwickelt hochgenaues Synchronisierungssystem für Teilchenbeschleuniger“, GSI Forschungshighlights, 2009.
•
„Hochpräzises Synchronisierungssystem für FAIR-Beschleuniger“,
Wissenschaftsmagazin Target, Ausgabe Nr. 2, Juli 2009.
•
„Velocity of Delay Changes in Fibre Optic Cables”, DIPAC, Basel, 2009.
•
„Reference Signal Generation with Direct Digital Synthesis for FAIR”, HIAT,
Venice, 2009.
•
„Signal Delay Measurement Method for Timing Systems“, BIW, Santa Fe, USA,
2010.
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 45
Current Status of the System in FAIR
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 46
Current Status of the System in FAIR
Official Name in FAIR is now BuTiS
 Bunch Phase Timing System
The information in the following two slides are taken from this publication.
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 47
Current Status of the System in FAIR
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 48
Current Status of the System in FAIR
Interaction of White-Rabbit and BuTiS
Starting points for
command execution
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 49
Current Status of the System in FAIR
The only Modification in the Principle

delay
measurement
PLL have to lock with
0.0036° to achieve 1 ps
stability
phase
correction
Kor = f ()
command data
Kor,1
10 MHz
central
clock
100 kHz
PLL
fibre
200 MHz
Update
Kor,2
100 kHz
reference generator
I1
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
I2
I3
Page 50
signal generator
Cavity
Current Status of the System in FAIR
Phone call 19th June with Bernhard Zipfel (GSI)
1. Central reference distribution and
2. 6 links have been installed and commissioned beginning of 2013
=> First running sub-system in FAIR
3. 16 links are planned in total
4. White Rabbit is synchronized to BuTiS
PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville
Page 51