PH-ESE seminar, CERN, 02.06.2013 Universal Picosecond Timing System developed for the Facility for Antiproton and Ion Research (FAIR) Dr.-Ing. Michael Bousonville GSI 2005 – 2010 DESY 2010 –
Download ReportTranscript PH-ESE seminar, CERN, 02.06.2013 Universal Picosecond Timing System developed for the Facility for Antiproton and Ion Research (FAIR) Dr.-Ing. Michael Bousonville GSI 2005 – 2010 DESY 2010 –
PH-ESE seminar, CERN, 02.06.2013 Universal Picosecond Timing System developed for the Facility for Antiproton and Ion Research (FAIR) Dr.-Ing. Michael Bousonville GSI 2005 – 2010 DESY 2010 – today PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 1 Overview • Fundamental Concepts of Timing Systems – In General – The 4 Concepts – Comparison • Universal Picosecond Timing System for FAIR – Design – Performance – Prospects • Current Status of the System in FAIR PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 2 Fundamental Concepts of Timing Systems PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 3 Fundamental Concepts of Timing Systems In General all timing systems do the following: From a Master Oscillator a signal with fM and φM jM will be transmitted to 2 or more reference points: Reference Point 1 Reference Point 2 φ1 φ2 f1 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville f2 j1 Page 4 j2 f: frequency φ: average phase j: phase jitter Fundamental Concepts of Timing Systems In General the theoretical ideal case is: Master Oscillator fM = f 1 = f 2 fM and φM = φ 1 = φ2 jM = j 1 = j2 = 0 and in real systems we have fM = f1 = f2 can be assumed as fulfilled φM ≠ φ 1 ≠ φ 2 ≠ φ M Reference Point 2 φ1 φ2 f1 Jitter > 0 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Reference Point 1 Page 5 j1 f2 j2 φM jM Fundamental Concepts of Timing Systems In General the optimization is about: Master Oscillator a)Long term drift fM and |φ1 - φ2| should be as constant as possible b)Short term jitter should be as low as possible Reference Point 1 Reference Point 2 φ1 φ2 j1 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 6 j2 φM jM Fundamental Concepts of Timing Systems Long term drift The change of phase offset between 2 reference points in average over time Master Oscillator fM and Here are 2 approaches pursued 1. |φ1 - φ2| ≈ constant Good for CW applications 2. φ1 ≈ φ2 Needed for processes that starts at a precise moment simultaneously Reasons for phase change Reference Point 2 φ1 φ2 j1 1. Change of transmission delays 2. Change of fM PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Reference Point 1 Page 7 j2 φM jM Fundamental Concepts of Timing Systems Measures against long term drift 1. Keep delays stable Master Oscillator a) Passively: fM and Phase stable components Temperature stabilisation of transmission system b) Actively: Measure and control the delay in the transmission system by a i. measurement instrument ii. delay unit Reference Point 2 φ1 φ2 j1 2. Keep frequency stable: GPS connection 3. Often a combination of these measures is used PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Reference Point 1 Page 8 j2 φM jM Fundamental Concepts of Timing Systems Short term jitter All systems try to minimize the jitter. Master Oscillator Jitter → min fM and Reasons for Jitter 1.Jitter of master oscillator 2.Additive noise due to signal transmission 3.Signal Interference (EMI) Reference Point 1 Reference Point 2 φ1 φ2 j1 Countermeasures → Keep the reasons 1 to 3 low PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 9 j2 φM jM Fundamental Concepts of Timing Systems Transmission Medium Since 1986 a trend can be observed to use standard single mode fibres (SMF) instead of coaxial cables for signal transmission. The advantages of SMFs are: 1.Very low attenuation of 0.2 dB/km @ 1550 nm 2.Insensitive against electromagnetic disturbance 3.Low dispersion of 17 ps/(km·nm) @ 1550 nm 4.SMF in loose tube cables show a moderate TCD < 50 ps/(km·K) 5.Favourable price of 1 €/m 6.Standard component good availability In the following, only systems with SMF will be considered. PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 10 Fundamental Concepts of Timing Systems Concept 1: Classic 1. E. Peschardt and J.P.H. Sladen – 1986 2. First systems using SMF 3. High optical attenuation of ca. 15 dB in both ways SNR Jitter Circulator Master Oscillator Tx Splitter Receiver Receiver Phasen Comparator PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 11 Transmission Fibre Reflector Phase Shifter Splitter Control Receiver Reference Signal Fundamental Concepts of Timing Systems Concept 2: Low Losses 1. T. Naito et. al. – 1999 2. First time WDM is used Problem of high optical losses in concept 1 is reduced form 15 to 3 dB Master Oscillator Transmitter Transmission Fibre 1.3mm Multiplexer 1.3mm Phase Shifter Multiplexer 1.5mm Phasen Comparator Receiver Receiver 1.5mm Control Transmitter Splitter Reference signal PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 12 Fundamental Concepts of Timing Systems Concept 3: Laser Based Synchronisation 1. H. Schlarb, A. Winter, F. Kärtner – 2005 2. More optical components A laser is the master oscillator Short term jitter < 10 fs Properties at DESY: pulse width ≈ 200 fs; repetition rate 1.3 GHz/6 ≈ 216.7 MHz Optical correlator for measuring the delay changes Optical Pulse Train Link Stabilisation Unit Master Laser Oscillator Phase Shifter FRM Stabilized Pulse Train = Reference Signal Pulse Laser Master RF Oscillator Optical Correlator PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Control Page 13 Application Synchronization-Hutch Fundamental Concepts of Timing Systems Optical Table Racks Master Laser Oscillator Free Space Distribution Concept 3 at XFEL Link Box Link Box Link Box Applications 1. Bunch Arrival Time Measurements Air Conditioning System Measurement Equipment 2. Laser-to-Laser Synchronization Fibre Cabling Synchronising of other pulse lasers Peripheral Devices 3. Laser-to-RF conversion Stabilizing the 1.3 GHz RF with the help of the optical reference signal Link End Link End Link End Bunch Arrival Time Monitor Laser-to-Laser Synchronization Laser-to-RF Conversion Diagnostic Photo Injector Laser Cavity synchronisation Applications separate CDRs PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 14 Gun, Cavities Fundamental Concepts of Timing Systems Synchronisation Hutch From here the Reference Signal will be distributed Concept 3 at XFEL XFEL –Nomenklatur 29.09.2004 ZM1 – Jähnke / Stoye Injector Laser SASE positions by Tobias Hass 26.4.2011 Seed Laser Laser to RF Conversion Bunch Arrival Time Monitors PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 15 Pump Probe Laser Fundamental Concepts of Timing Systems Concept 4: Phase Synchronous References 1. M. Bousonville – 2008 2. For Concept 1 to 3 it is sufficient to measure only the delay changes and keep the delays stable by a control loop |φ1 - φ2| ≈ constant, but the difference is not know 3. In concept 4 the phases should be equalized, therefore not only the delay change, but also the absolute delay have to be measured and the phases adjusted φ1 ≈ φ2 4. This is necessary for starting processes synchronously 5. Systems with this functionality a) White Rabbit → PH-ESE Electronics Seminars 14 May 2013 b) Universal Picosecond Timing System → will be discussed in detail PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 16 Fundamental Concepts of Timing Systems Comparison Concept Approach Reference Applications 1. Classic |φ1 - φ2| ≈ constant RF RF Distribution 2. Low Losses |φ1 - φ2| ≈ constant RF RF Distribution 3. LB Sync |φ1 - φ2| ≈ constant Optical pulse train Bunch Arrival Time Measurements Laser-to-laser Synchronisation Laser-to-RF conversion 4. Phase Sync. φ1 ≈ φ2 Absolute time Starting processes synchronously RF Distribution PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 17 Universal Picosecond Timing System for FAIR PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 18 Overview • Introduction – Motivation – Design Goal – Reference Time • System Design – – – – • • • • PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Basic Principle Optical Network Delay Measurement Unit Reference Generator Performance Prospects Innovations Summary Page 19 Introduction Motivation 500 m • Cavity synchronisation signal generation (DDS) synchronisation Ref signal generator f, central clock Ref Ref Ref cavity Ref CC • Therefore necessary: – Distribution of phase synchronous reference signals Ref • Problems: – Different distances different time delays – Time delays ≠ constant Ref t = f ( L,T,...) = f ( t ) PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville reference generator Page 20 Ref Introduction tolerance Design Goal Phase synchronisation central clock φSys reference generator 1 transmission unit φRef Δμ reference generator 2 φ 2.5σ φRef Crucial: Accuracy between the reference phases 5 514ps Accuracy requirement: 1° at 5.4 MHz Optimisation Parameters: PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 21 Δμ↓ and σ↓ Introduction Reference Time Reference Signal 1 Reference Signal 2 t t0 + n × TRef ,2 System Clocks Reference Signals f Sys ,1 200 MHz f Ref ,1 50 MHz f Sys ,2 97.7 kHz f Sys ,2 f Ref,2 f Ref ,2 97.7 kHz PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 22 f Sys ,1 211 f Ref ,1 29 Introduction Starting Points Command data acceptance windows TRef,1 Reference Signal 1 TRef,2 Reference Signal 2 Starting Points for Command Execution PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 23 System Design Basic Principle Assembly of one system branch transmission unit φSys transmission medium φSys+φ(τ) reference generator φRef signal generator cavity τ delay measurement unit Ref f Sys f Any delay variation can be compensated absolute delay drift irrelevant PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 24 System Design Basic Principle Star-shaped distribution transmission unit φSys transmission transmission transmission φSys+φ(τ1) reference generator φSys+φ(τ2) reference generator φSys+φ(τN) reference generator φRef φRef φRef τn delay measurement unit One instead of N transmission units no different time drifts One instead of N measurement units systematic error irrelevant much less effort PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 25 signal generator cavity signal generator cavity signal generator cavity System Design Subtasks and Interfaces Sys ,1 Interface 2 Sys ,1 ( ) Interface 3 Ref ,1 f (Sys ,1 ) f ( ) Sys ,2 Sys ,2 ( ) Ref ,2 f (Sys ,2 ) f ( ) Interface 1 central clock transmission of system clocks generation of reference signals signal generator delay measurement asynchronous PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville synchronous Page 26 System Design Way of Proceeding the Development 1. Identification and investigation of the most important system parameters - Noise ↓ - Crosstalk ↓ - Unwanted reflections ↓ - Velocity of signal delay change ↓ Jitter ↓ Measurement error ↓ Synchronisation error ↓ 2. System design - Choice of technologies - Development of an measurement method - System modelling for theoretical calculation and optimization of the system parameters - Planning of the prototype (80k€ total budget cost pressure) 3. Realisation of the prototype 4. Verification of the theoretical calculations in practice PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 27 System Design Optical Network Configuration of one transmission branch Sys. Clock 1 Sys. Clock 2 Tx 1 Tx 2 λ1 λ2 multiplexer λ1, λ2 Add/Drop transmission fibre λ1, λ2, λM λ1 λM FBG IN OUT λ1, λ2 demultiplexer λ2 Rx 1 Sys. Clock 1 Rx 2 Sys. Clock 2 ADD transmission unit receiver unit circulator λM λM Tx I1 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Rx measurement unit Page 28 I2 System Design Optical Network – Advantages of DWDM → very good channel separation > 100 dBele → attenuation only 4 dBopt optical power at all receivers ≈ 0 dBm Measurement channel (Rayleigh-Noise) -80 Power density [dB/Hz] Relative noise power density [dB/Hz] All channels operating point -100 -120 sum shot -140 RIN -160 receiver -180 -40 -30 -20 -10 0 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville measurement signal -105 -110 calculated -115 -120 measured -125 0 10 Optical input power of the receiver [dBm] SNR B 1GHz 54.1dBele -100 5 10 15 20 25 f [MHz] SNR B 10Hz 90.6dBele Page 29 σMess,Trans 0.0012 System Design Optical Network Star-shaped distribution transmission unit optical amplifier splitter gain = M x 3dB 2M 1x Add/Drop receiver unit 1 Add/Drop receiver unit 2 Add/Drop receiver unit N distribution optical switch measurement unit I2 I1 reflector (permanent calibration) PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 30 System Design Noise power density [dB/Hz] Optical Network – EDFA -130 operating point approximately : EDFA sum -140 RIN -150 SNR 53.9dBele ü 74.6dBele receiver shot -160 EDFA -170 -20 -15 -10 -5 0 Sys ,Trans 322 fs → Signal quality almost not effected 5 10 Optical input power of the EDFA per channel [dBm] Optimisation Parameter: PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville 1 Pin σ = f (σSys,Trans) Page 31 ok System Design Optical Network - Prototype laser multiplexer mirrors splitter modulators network analyser PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville switch Page 32 System Design Measurement Unit λ1, λ2 Add/Drop OUT ADD FM f M 1 , f M 2 , ... , f MN circulator M M 1 , M 2 , ... , MN boundary condition : accuracy f M 1 f M ,min 1 λM 2 λM Tx Rx phase measurement accuracy f M ,max 2 360 fM accuracy 0,4 FM 50kHz, 500kHz, 50MHz, 6GHz PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville τ accuracy Page 33 λM FBG IN Delay determination via phase measurement λ1, λ2, λM transmission fibre 1 0,4 92.6 fs 6GHz 2 360 System Design Not Measurable Delay Changes Add/Drop IN transmission fibre λ1, λ2, λM λ1 λM FBG λ1, λ2 OUT Demultiplexer λ2 Rx 1 System Clock 1 Rx 2 System Clock 2 ADD delay measurement at operation not possible I2 Error < 2.5 ps per branch synchronisation error: ΔtSys,G < 5 ps Optimisation Parameter: Δμ = f (ΔtSys,G) PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 34 ok System Design Reference Generator phase correction delay measurement Kor = f () command data Sys,1 central clock Sys,2 Sys,1 + () fibre Sys,2 + () Kor,1 DDS1 Ref,1 Update Kor,2 DDS2 Ref,2 Update reference generator I1 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville I2 I3 Page 35 signal generator Cavity System Design phase tuning word φKor reset DDS phase accumulator phase shifter ´2 frequency tuning word fRef + mod 2 M Akku M Akku -M Off phase register + mod 2 M Akku z -1 system clock 1 ´ phase accumulator 2 DDS (n) 2p M 2 Akku x(n) DDS (n) x(n) x(t) 2 M Akku 2 a a 0 0 8 n x(t) = reference signal digital to analogue converter phase shifter DDS,Off = /2 M Akku phase to amplitude converter 0 8 n PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville 0 Page 36 8 n 8 n 0 T t System Design Reference Generator Reference Signal Generation via DDS principle 1. No phase adjustment limit (in contrast to other methods) 2. Resolution tS = 1.22 ps 3. Accuracy tG < 7.5 ps 4. Jitter σRG = 7.56 ps Martin Kumm. Integrated DDS: AD9854 - CMOS 300 MSPS Quadrature Complete DDS. tS 2tG tSys,G 21.2 ps 2 2 Sys ,Trans RG 7.57 ps PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 37 Performance Test of the whole System - Two Reference Points - Distance from central clock ≥ 1 km each - Average interval 1 s PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 38 Measurement: Δμ < 15 ps Performance Accuracy of the Reference Time Mean time deviation ü ïï tS = 1.22 psý ï tG < 7.5 ps ïþ Time fluctuation (Jitter) DtSys,G < 5 ps Sys ,Trans 0.322 ps Þ Dm < 21.2 ps RG 7.56 ps 7.57 ps Comparison with specification 5 59.1 ps 514 ps one order of magnitude better than required PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 39 Innovations 1. Two phase synchronous Reference Signals will be provided universal time information -> Different RF can be derived -> Also RF ramps with adjustable offsets -> Other processes can be started synchronously PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 40 Innovations 2. Optical Dense Wavelength Division Multiplex (DWDM) separate optical measurement channel high precision measurement transmission of several independent System Clocks very low transmission loss 3. Only one measurement unit with permanent calibration systematic error irrelevant cost-cutting 4. Direct Digital Synthesis (DDS) for generation of the Reference Time unlimited phase shift of the Reference Signals still the Reference Time can be adjusted in small intervals (1.22 ps) PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 41 Prospects Measures to Improve the Performance Example: 1. Higher frequencies fSys,1 = 1 GHz fRef,1 = 250 MHz 2. Use of other DDS unit types 3. Temperature stabilisation DDS units receiver units PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville σRG ≈ 250 fs tS = 61 fs tG ↓ ΔtSys,G ↓ Page 42 σ < 1 ps Δμ << 21.2 ps Summary 1. Development of a system for distribution of a Reference Time Reference Time consists of 2 Reference Signals These Reference Signals will be provided phase synchronously at different points The signal generators of the cavities will be synchronised with these Reference Signals 2. System Optical Network Measurement Unit Reference Generators → completely prototype created 3. Accuracy of the Reference Time Mean Deviation Δμ < 21.2 ps Jitter σ = 7.57 ps Requirements fulfilled → results verified at the prototype 4. Significant improvement of the performance is possible PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 43 Acknowledgements Prof. Dr.-Ing. Peter Meißner, Dr.-Ing. Matthias Gunkel, Dipl.-Ing. Martin Kumm and Dr. Claudius Peschke Ruth Maria Bousonville, Dipl.-Ing. Jacqueline Rausch and Dr.-Ing. Harald Klingbeil Dipl.-Ing. Enno Liess and Dr. habil. Peter Hülsmann PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 44 Publications • „RF Reference Signal Distribution System for FAIR”, EPAC, Genoa, 2008. Contributed talk • „Universal Picosecond Timing System for the Facility for Antiproton and Ion Research”, Physical Review Special Topics - Accelerators and Beams, 2009. • „Optische Übertragung phasensynchroner Taktsignale unter Verwendung des Wellenlängen-Multiplex-Verfahrens“, Dissertation, Technische Universität Darmstadt, 2009. http://tuprints.ulb.tu-darmstadt.de/1382/ • „GSI entwickelt hochgenaues Synchronisierungssystem für Teilchenbeschleuniger“, GSI Forschungshighlights, 2009. • „Hochpräzises Synchronisierungssystem für FAIR-Beschleuniger“, Wissenschaftsmagazin Target, Ausgabe Nr. 2, Juli 2009. • „Velocity of Delay Changes in Fibre Optic Cables”, DIPAC, Basel, 2009. • „Reference Signal Generation with Direct Digital Synthesis for FAIR”, HIAT, Venice, 2009. • „Signal Delay Measurement Method for Timing Systems“, BIW, Santa Fe, USA, 2010. PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 45 Current Status of the System in FAIR PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 46 Current Status of the System in FAIR Official Name in FAIR is now BuTiS Bunch Phase Timing System The information in the following two slides are taken from this publication. PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 47 Current Status of the System in FAIR PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 48 Current Status of the System in FAIR Interaction of White-Rabbit and BuTiS Starting points for command execution PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 49 Current Status of the System in FAIR The only Modification in the Principle delay measurement PLL have to lock with 0.0036° to achieve 1 ps stability phase correction Kor = f () command data Kor,1 10 MHz central clock 100 kHz PLL fibre 200 MHz Update Kor,2 100 kHz reference generator I1 PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville I2 I3 Page 50 signal generator Cavity Current Status of the System in FAIR Phone call 19th June with Bernhard Zipfel (GSI) 1. Central reference distribution and 2. 6 links have been installed and commissioned beginning of 2013 => First running sub-system in FAIR 3. 16 links are planned in total 4. White Rabbit is synchronized to BuTiS PH-ESE seminar, 02.07.2013, Dr.-Ing. Michael Bousonville Page 51