nd Generation (“NextGen”) Sequencing Technologies “Fantastic” bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical use.

Download Report

Transcript nd Generation (“NextGen”) Sequencing Technologies “Fantastic” bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical use.

nd
2
Generation
(“NextGen”)
Sequencing Technologies
“Fantastic”
bizarre or exotic; seeming more appropriate
to a fairy tale than to reality or practical use
% of Paired K-mers with Uniquely
Assignable Location
Read Length is Not As Important For
Resequencing
100%
90%
80%
70%
60%
E.COLI
50%
HUMAN
40%
30%
20%
10%
0%
8
Jay Shendure
10
12
14 16
18
20
Length of K-mer Reads (bp)
Paired End Reads are Important!
Known Distance
Read 1
Read 2
Repetitive DNA
Unique DNA
Paired read maps uniquely
Single read maps to
multiple positions
emulsion PCR
emPCR
Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437, 376-380
Roche 454
Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437, 376-380
OH
EE Slawson Tempel, © WUSTL
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
EE Slawson Tempel, © WUSTL
3 2 1
EE Slawson Tempel, © WUSTL
OH
Pyrophosphate
OH
EE Slawson Tempel, © WUSTL
OH
EE Slawson Tempel, © WUSTL
ATP + luciferin
OH
EE Slawson Tempel, © WUSTL
ATP + luciferin
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
OH
OH
EE Slawson Tempel, © WUSTL
OH
EE Slawson Tempel, © WUSTL
OH
EE Slawson Tempel, © WUSTL
ATP + luciferin
ATP + luciferin
ATP + luciferin
OH
EE Slawson Tempel, © WUSTL
ATP + luciferin
ATP + luciferin
ATP + luciferin
OH
EE Slawson Tempel, © WUSTL
Brightness of flash is proportional to number of nucleotides added
Flash is
too brigh
Flash brightness
4-mer
3-mer
2-mer
1mer
TCACTTCAAGGGT…
EE Slawson Tempel, © WUSTL
~ 0.5 Gb/run
Roche 454
Read length
350-400 bp
200 cycles
A
EE Slawson Tempel, © WUSTL
T
G
C
Illumina
~ 400 bp
Nebulizer
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
Flow cell
8 channels (“lanes”)
Surface of flow cell
coated with a lawn of
oligo pairs
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
Each piece has a
unique sequence
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
“bridge PCR”
EE Slawson Tempel, © WUSTL
thousands of strands/cluster
EE Slawson Tempel, © WUSTL
each cluster (“polony”)
has a unique sequence
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
EE Slawson Tempel, © WUSTL
STOP
STOP
STOP
STOP
EE Slawson Tempel, © WUSTL
Metzger M (2009) Nature Reviews Genetics 11: 31-46
STOP
STOP
STOP
STOP
EE Slawson Tempel, © WUSTL
STOP
STOP
STOP
OH
EE Slawson Tempel, © WUSTL
STOP
STOP
OH
EE Slawson Tempel, © WUSTL
STOP
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
OH
EE Slawson Tempel, © WUSTL
STOP
STOP
OH
EE Slawson Tempel, © WUSTL
STOP
STOP
OH
EE Slawson Tempel, © WUSTL
STOP
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
EE Slawson Tempel, © WUSTL
STOP
OH
EE Slawson Tempel, © WUSTL
G…
© Illumina, EEST, © WUSTL
GC…
© Illumina, EEST, © WUSTL
GCT…
© Illumina, EEST, © WUSTL
GCTG…
© Illumina, EEST, © WUSTL
GCTGA…
© Illumina, EEST, © WUSTL
100+ Million Clusters
Per Flow Cell
100 Microns
Camera time is the limiting step!
Flowcell
8 lanes
For picture taking:
Each lane is broken up into 100 tiles,
each fluor is imaged separately –
2400 pictures taken per cycle
EE Slawson Tempel, © WUSTL
Chemistry problem 1: terminator is retained
out of phase
STOP
EE Slawson Tempel, © WUSTL
Chemistry problem 2: fluor is retained
OH
EE Slawson Tempel, © WUSTL
Chemistry problem 2: fluor is retained
STOP
EE Slawson Tempel, © WUSTL
Chemistry problem 2: fluor is retained
STOP
EE Slawson Tempel, © WUSTL
Illumina
>100 Gb/run HiSeq
90x106 reads/lane * 102 bp/read = 9x109 bp/lane * 16 lanes/run = 144 Gb/run
~ 3 – 30 Gb/run GAII
Read length
30 – 120 bp
ABI SOLiD
Support Oligonucleotide Ligation Detection
emPCR
ABI SOLiD
Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
ABI SOLiD
ABI SOLID
Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
ABI SOLiD
Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:387-402.
Ion Torrent
Nature 475:348 (2011)
~100 bp reads
30 Mb/run 
Ion Torrent read quality
• 3.3 million SNPs
454, 7.4X, 24.5 Gb
cost < $1M
10,654 cause aa substitution (7,648 different from Venter)
• 222,718 indels (2 to 40kb)
• 18 CNVs (26 kb to 1.6 Mb)
• carrier of 10 highly penetrant disease alleles
PMID: 20010809
Illumina, 73X, 173 Gb
contig N50 = 40 kb
scaffold N50 = 1.3 Mb
PLoS Genetics 6: e1000832 (2010)
ABI SOLiD, 30X coverage
•107.5 Gb of raw data
•55.51 Gb mapped to genome
• 35 interchromosomal translocations
• 1,315 structural variations (>100 bp)
• 191,743 small (<21 bp) indels
• 2,384,470 SNVs
• 512 genes homozygously mutated
GENETICS 2009 182: 25–32
a recessive EMS-induced mutation affecting egg shell morphology
Illumina, 8X coverage
• 103 SNP differences between mutant and wt
• 9 non-synonomous
• 2 nonsense >> one in encore, an obvious candidate
30 volume 42 | number 1 | january 2010
Illumina
5.1 Gb of sequence
76 bp reads
40X coverage
4 affected individuals
RNA-Seq
Pepke S, Wold B & Mortazavi A. (2009) Nature Methods 6:S22
ChIP-Seq
Lefrançois P et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37
Plant Physiology, July 2009, Vol. 150, pp. 1541–1555
rd
3
Generation
(“Next2Gen”)
Sequencing Technologies
“Fabulous”
having no basis in reality; mythical
A
T
G
C
.
.
.
.
.
.
A
T
G
C
.
.
.
.
.
.
A
T
G
C
.
..
..
.
A
T
G
C
.
. .
. .
.
A
T
G
.
.
.
A
T
G
C
.
.
..
.
.
A
T
G
C
.
.
.
Helicos
Single-molecule
sequencing
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
Metzger M (2009) Nature Reviews Genetics 11: 31-46
Helicos
105 to 140 Megabases per hour
~ 35 bp average read length
(2009) Volume 27: 847
Helicos, 28X coverage, 84 Gb
• 2.8M SNPs
• 752 CNVs
Ion Torrent
Single-molecule
sequencing
Single-molecule
sequencing
+
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
Nanopore sequencing
+
-
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
Nanopore sequencing
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
Pacific Biosciences
Single-molecule
sequencing
Eid et al 2008
emission
excitation emission
ZMW: a hole, tens of nanometers in diameter,
fabricated in a 100nm metal film deposited on a
silicon dioxide substrate
detection volume 20 zeptoliters (10-21 liters).
PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
When the DNA polymerase encounters the nucleotide complementary to the next base in the
template, it is incorporated into the growing DNA chain. During incorporation, the enzyme holds
the nucleotide in the ZMWs detection volume for tens of milliseconds, orders of magnitude
longer than the average diffusing nucleotide. The system detects this as a flash of bright light
because the background is very low. The polymerase advances to the next base and the process
continues to repeat
PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
multiple reads of
the same molecule
PacBio technology backgrounder: http://www.pacificbiosciences.com/index.php?q=technology-introduction
Eid J et al. (2009) Molecules Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133 PMID: 19023044
Does it work?
• 150 bp circular template
• ~93% raw accuracy
• 15x coverage 99.3% accuracy
Eid et al., 2009
~ 2-5 bp/sec
PacBio claims that, by 2013, the
technology will be able to give a
‘raw’ human genome sequence in
less than 3 min, and a complete
high-quality sequence in 15 min.
(http://www.bio-itworld.com/BioIT_Content.aspx?id=71746andamp;terms=Feb+12+2008+Pacific+Biosciences).
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
F. Sanger, S. Nicklen, and A. R. Coulson, Proc Natl Acad Sci U S A. 1977; 74: 5463–5467