Chalker-Coddington network model and its applications to various quantum Hall systems V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel INI Mathematics and Physics of Anderson localization:
Download ReportTranscript Chalker-Coddington network model and its applications to various quantum Hall systems V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel INI Mathematics and Physics of Anderson localization:
Chalker-Coddington network model and its applications to various quantum Hall systems V. Kagalovsky Sami Shamoon College of Engineering Beer-Sheva Israel INI Mathematics and Physics of Anderson localization: 50 Years After Delocalization Transitions and Multifractality 2 November to 6 November 2008 Context Integer quantum Hall effect Semiclassical picture Chalker-Coddington network model Various applications Inter-plateaux transitions Floating of extended states New symmetry classes in dirty superconductors Effect of nuclear magnetization on QHE INI INI Inter-plateaux transition is a critical phenomenon INI In the limit of strong magnetic field electron moves along lines of constant potential Scattering in the vicinity of the saddle point potential INI Transmission probability T 1 1 exp(- ) Percolation + tunneling The network model of Chalker and Coddington. Each node represents a saddle point and each link an equipotential line of the random potential (Chalker and Coddington; 1988) z1 z4 z3 z2 Z1 Z4 M Z2 Z3 e i M 0 INI 1 0 cosh i e sinh 2 sinh e i cosh 0 3 0 i e 4 Crit. value argument Fertig and Halperin, PRB 36, 7969 (1987) Exact transmission probability through the saddle-point potential VSP U (x2 y2)V0 T 1 1 exp(- ) (E (n 1/2)E2 V0)/ E1 E2 c U E1 m2 c for strong magnetic fields For the network model T 1 cosh2 2 ln(sinh ) INI Total transfer matrix T of the system is a result of N iterations. Real parts of the eigenvalues are produced by diagonalization of the product 1N e 1/2 (T †T ) M – system width 2 N e M N 2 M N 2 2 N 1N e e e e Lyapunov exponents 1>2>…>M/2>0 Localization length for the system of width M M is related to the smallest positive Lyapunov exponent: INI M ~ 1/M/2 Loc. Length explanation Renormalized localization length as function of energy and system width 0.9 0.9 0.8 0.8 M M const 0.7 0.7 M=16 M=32 M=64 M=128 0.6 0.6 0.5 0.5 M/M 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0 0 0.0 2 0.2 4 0.4 6 0.6 One-parameter scaling fits data INI for different M on one curve 8 0.8 M ( ) M 10 1.0 M f ( ) The thermodynamic localization length is then defined as function of energy and diverges as energy approaches zero ( ) ~| | Main result 2.5 0.5 in agreement with experiment and other numerical simulations Is that it? INI Generalization: each link carries two channels. Mixing on the links is unitary 2x2 matrix e cos U e i e sin i i e sin i e cos i Lee and Chalker, PRL 72, 1510 (1994) Main result – two different critical energies even for the spin degenerate case INI One of the results: Floating of extended states Landau level (B) INI PRB 52, R17044 (1996) V.K., B. Horovitz and Y. Avishai General Classification: Altland, Zirnbauer, PRB 55 1142 (1997) S N S INI Compact form of the Hamiltonian T c h 1 † ˆ c c H † 2 h c The 4N states are arranged as (p,p,h,h) Four additional symmetry classes: combination of time-reversal and spin-rotational symmetries Class C – TR is broken but SROT is preserved – corresponds to SU(2) symmetry on the link in CC model (PRL 82 3516 (1999)) Renormalized localization length M ( ,) M INI with f M 1 ,M 1 1.12, 1.45 Unidir. Motion argument At the critical energy M M f M , M const and is independent of M, meaning the ratio between two variables is constant! Energies of extended states c()c xy 0 xy 1 Spin transport xy 2 INI PRL 82 3516 (1999) V.K., B. Horovitz, Y. Avishai, and J. T. Chalker Class D – TR and SROT are broken Can be realized in superconductors with a p-wave spin-triplet pairing, e.g. Sr2RuO4 (Strontium Ruthenate) The A state (mixing of two different representations) – total angular momentum Jz=1 broken time-reversal symmetry Triplet INI broken spin-rotational symmetry y kx ik y k1 k 2 θ p-wave x k 2 0 cos(k 2) i sin(k 2) k1 0 cos(k1) isin(k1) k1 k 2 SNS with phase shift π INI θ 0 cos(k1) i sin(k1) only for 90 S N S there is a bound state Chiral edge states imply QHE (but neither charge nor spin) – heat transport with Hall coefficient 2 2kB2 K xy Ratio Kxy /T is quantized 3h Class D – TR and SROT are broken – corresponds to O(1) symmetry on the link – one-channel CC model with phases on the links (the diagonal matrix element ) l 0 with probability W with probability 1-W The result: M 0 !!! M=2 exercise cosh sinh 1 0 1 e A 1 A sinh cosh 0 A 1 After many iterations ... e[( A AB ABC...) ] INI 1 ABC... cosh sinh 1 0 1 e A 1 sinh cosh 0 A 1 A After many iterations ... e[( A AB ABC...) ] 1 ABC... After many iterations there is a constant probability for ABC…=+1, and correspondingly 1- for the value -1. Then: W+(1- )(1-W)= =1/2 except for W=0,1 Both eigenvectors have EQUAL probability , and their contributions therefore cancel each other leading to =0 INI Change the model Node matrix cosh A sinh A sinh A cosh A Cho, M. Fisher PRB 55, 1025 (1997) Random variable A=±1 with probabilities W and 1-W respectively cosh A sinh A sinh A cosh A 1 0 cosh sinh 1 0 0 A sinh cosh 0 A Disorder in the node is equivalent to correlated disorder on the links – correlated O(1) model M=2 exercise cosh A sinh A 1 e A 1 1 sinh A cosh A 1 =0 only for <A>=0, i.e. for W=1/2 INI Sensitivity to the disorder realization! INI 0.6 0.4 xy=1 METAL 0.2 Heat transport 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 W -0.2 xy=0 -0.4 -0.6 PRB 65, 012506 (2001) J. T. Chalker, N. Read, V. K., B. Horovitz, Y. Avishai, A. W. W. Ludwig I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys. Rev. B 63, 104422 (2001) A. Mildenberger, F. Evers, A. D. Mirlin, and J. T. Chalker, Phys. Rev. B 75, 245321 (2007) INI Another approach to the same problem M/M M/M M =16 M = 32 M = 64 M = 128 M = 256 2 M =16 M = 32 M = 64 M = 128 M = 256 2 (a) (b) 1 1 0 0 0.0 0.2 0.4 0.6 0.8 1.0 W=0.1 is fixed INI 0 5 10 15 20 25 1/ M =1.4 30 35 M/M M/M 2 2 M = 16 M = 32 M = 64 M = 128 M = 16 M = 32 M = 64 M = 128 (b) (a) 1 0.00 1 0.05 0.10 0.15 W =0.1 is fixed INI 0 1 2 3 4 5 1/ W-0.2|M =1.4 6 M/M 7 M=16 M=32 M=64 M=128 6 5 4 3 2 1 0 0 1 2 1/ W-0.19|M INI =1.4 3 PRL 101, 127001 (2008) INI V.K. & D. Nemirovsky 0.6 Pure Ising transition =1 >1 0.4 xy=1 METAL 0.2 0.0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 W -0.2 xy=0 -0.4 -0.6 A. Mildenberger, F. Evers, A. D. Mirlin, and J. T. Chalker, Phys. Rev. B 75, 245321 (2007) INI W≡p For W=0.1 keeping only higher M systems causes a slight increase in the critical exponent from 1.4 to 1.45 indicating clearly that the RG does not flow towards pure Ising transition with =1, and supporting (ii) scenario: W=0.1>WN In collaboration with Ferdinand Evers INI W=0.02 M/M 3 M=16 M=32 M=64 M=128 2 1 0 0.00 0.05 0.10 0.15 0.20 INI 0.25 0.30 W=0.02 M/M =1.29 3 M=16 M=32 M=64 M=128 2 1 5 10 1/1.29 M INI W=0.02 M/M 1.8 =1.09 1.6 1.4 1.2 M=32 M=64 M=128 1.0 0.8 0.6 0.4 0.2 0.0 0 5 10 15 20 1/1.09 M INI 25 30 W=0.02 RG flows towards the pure Ising transition with =1! M/M 1.0 =1 0.8 0.6 W=0.02<WN M=64 M=128 0.4 0.2 0.0 0 5 10 15 20 1/11 M INI 25 30 35 40 W=0.04 M=16, 32, 64, 128 =1.34 M=32, 64, 128 =1.11 M=64, 128 =0.97 RG flows towards the pure Ising transition with =1! W=0.04<WN We probably can determine the exact position of the repulsive fixed point WN and tricritical point WT? INI Back to the original network model Height of the barriers fluctuate - percolation INI Random hyperfine fields Hint n Ii He Nuclear spin Magnetic filed produced by electrons 8 H e g se re Ri e 3 Additional potential Vhf B Bhf INI Nuclear spin relaxation Spin-flip in the vicinity of long-range impurity S.V. Iordanskii et. al., Phys. Rev. B 44, 6554 (1991) Yu.A. Bychkov et. al., Sov. Phys-JETP Lett. 33, 143 (1981) , INI First approximation – infinite barrier with probability p INI If p=1 then 2d system is broken into M 1d chains All states are extended independent on energy Lyapunov exponent =0 for any system size as in D-class superconductor Naive argument – a fraction p of nodes is missing, therefore a particle should travel a larger distance (times 1/(1-p)) to experience the same number of scattering events, then the effective system width is M(1-p)-1 and the scaling is M M 1 p 1 f M ( ) But “missing” node does not allow particle to propagate in the transverse direction. Usually M~M, we, therefore, can expect power >1 INI M/M 20 M=16 M=32 M=64 18 16 14 12 10 8 6 4 2 0 0.0 0.2 0.6 0.4 0.8 1.0 p Renormalized localization length at critical energy =0 as function of the fraction of missing nodes p for different system widths. Solid line is the best fit 1.24(1-p)-1.3. Dashed line is the fit with "naive" exponent =1 INI (1-p)1.3/M M=16 p=0.5 M=32 p=0.5 M=64 p=0.5 M=16 p=0 M=32 p=0 M=64 p=0 M=16 =0.3 M=32 =0.3 M=64 =0.3 M=16 =0.5 M=32 =0.5 M=64 =0.5 M=16 =0 M=32 =0 M=64 =0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 M2.5 Data collapse for all energies , system widths M and all fractions p≠1 of missing nodes INI The effect of directed percolation can be responsible for the appearance of the value ≈1.3. By making a horizontal direction preferential, we have introduced an anisotropy into the system. Our result practically coincides with the value of critical exponent for the divergent temporal correlation length in 2d critical nonequilibrium systems, described by directed percolation models H. Hinrichsen, Adv. Phys. 49, 815 (2000) G. Odor, Rev. Mod. Phys. 76, 663 (2004) S. Luebeck, Int. J. Mod. Phys. B 18, 3977 (2004) It probably should not come as a surprise if we recollect that each link in the network model can be associated with a unit of time C. M. Ho and J. T. Chalker, Phys. Rev. B 54, 8708 (1996). INI Thanks to Ferdinand Evers Scaling M M cl 4 / 3 1 p cl f M q q 2.5 The fraction of polarized nuclei p is a relevant parameter PRB 75, 113304 (2007) INI V.K. and Israel Vagner Summary Applications of CC network model QHE – one level – critical exponents QHE – two levels – two critical energies – floating QHE – current calculations QHE – generalization to 3d QHE - level statistics SC – spin and thermal QHE – novel symmetry classes SC – level statistics SC – 3d model for layered SC Chiral ensembles RG QHE and QSHE in graphene INI