Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005
Download ReportTranscript Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005
Presentation Slides for Chapter 15 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 30, 2005 Coagulation Process by which particles collide and stick together Integro-differential coagulation equation (15.1) 0 0 n 1 ,nnd n ,nd t 2 Monomer Size Distribution Fig. 15.1 Coagulation Over Monomer Distribution Coagulation equation over monomer size distribution (15.2) k1 j1 j 1 nk 1 k j, j nkj n j nk k, j n j t 2 Rewrite in fully implicit finite-difference form nk,t nk,th 1 k1 Pk, j Lk, j h 2 j1 j 1 (15.3) Coagulation Over Monomer Distribution Finite-difference form (15.3) nk,t nk,th 1 k1 Pk, j Lk, j h 2 j1 Production rate j 1 (15.4) Pk,j kj, j nk j,t n j,t Loss rate Lk ,j k, j nk,t n j,t --> Pk ,j L k j, j Rearrange (15.3) (15.5) k1 j 1 j1 1 nk,t nk,th h k j, j nk j,t n j,t h k,j nk,t n j,t 2 Semiimplicit Solution Over Monomer Size Distribution Write loss rate in semi-implicit form Lk ,j k, j nk,t n j,t (15.6) --> Lk,j k, j nk,t n j,th Substitute (15.6) into (15.3) k1 j 1 j1 (15.7) 1 nk,t nk,th h k j, j nk j,t n j,th h k, j nk,t n j,t h 2 Rearrange --> semiimplicit solution (15.8) Treats number correctly but does not conserve volume nk,t 1 nk,t h h 2 k1 k j, jnk j,t n j,th j 1 1 h k,j n j,t h j 1 Semiimplicit Solution Over Monomer Size Distribution Revise to conserve volume, giving up error in number (15.9) k 1 v k,t h h v k,t k j,j vk j,t n j,t h j1 1 h k ,j n j,t h j1 where vk,t=knk,t Semiimplicit Solution Over Arbitrary Size Distribution Volume of intermediate particle (15.10) Vi,j i j Volume fraction of Vi,j partitioned to each model bin k (15.11) k 1 Vi,j k k 1 k Vi, j fi, j,k 1 fi,j,k 1 1 0 k Vi, j k 1 k NB k -1 Vi, j k k 1 Vi, j k k NB all other cas es Semiimplicit Solution Over Arbitrary Size Distribution Incorporate fractions into (15.9) (15.12) k k 1 v k,t v k,t h h fi, j,k i, j vi,t n j,t h j1 i1 NB 1 h 1 fk ,j,k k ,j n j,t h j1 Semiimplicit Solution Over Arbitrary Size Distribution Final particle number concentration (15.13) vk,t nk,t k Semiimplicit solution for volume concentration when multiple components (15.14) k k 1 v q,k,t v q,k ,t h h fi, j,k i, j vq,i,t n j,t h j1 i1 NB j1 1 h 1 fk, j,k k ,j n j,t h Smoluchowski’s (1918) Solution Assumes initial monodisperse size distribution, a monomer size distribution during evolution, and a constant rate coefficient nk ,t nT,t h 0.5hnT,t h 1 0.5hnT,t h Coagulation kernel (rate coefficient) 8k BT 3a k 1 (15.15) k 1 (15.16) Smoluchowski’s (1918) Solution dn (No. dn (No. cm -3 ) /d log 10 DD cm-3) / d log 10 p p Comparison of Smoluchowski's solution, an integrated solution, and three semi-implicit solutions 108 106 4 10 Initial Smol. Integrated SI (1.2) SI (1.5) SI (2.0) 102 0 10 0.01 P article diameter (D , m) p 0.1 Fig. 15.2 Self-Preserving Solution Self-preserving size distribution (15.17) nT,t h i i ni,t h exp p p Solution to coagulation over self-preserving distribution (15.18) i p ni,t 2 exp 1 0.5hn T,t h 1 0.5hnT,th nT,thi p Self-Preserving Solution 106 4 10 -3 dn (No. cm ) /d log D -3 10 dn (No. cm ) / d log10D pp Self-preserving versus semi-implicit solutions 2 10 100 0.01 Initial Analytical SI (1.5) SI (2) 0.1 P article diameter (D, m) p 1 Fig. 15.3 Coagulation Over Multiple Structures Internal mixing among three externally-mixed distributions Fig. 15.4 Coagulation Over Multiple Structures Volume concentration of component q in bin k of distribution N (15.19) vq,Nk,t h h Tq,Nk,t,1 Tq, Nk,t,2 v q,Nk,t 1 hTq,Nk,t,3 NT PN ,M nMj,t h Tq, Nk,t,1 f Ni,Mj, Nk,t h Ni,Mj,t h v q,Ni,t M 1 j 1 i 1 NT NT k k 1 QI,M,N nMj,t h Tq, Nk,t,2 fIi,Mj,Nk,t h Ii,Mj,t h v q,Ii,t M 1 I 1 j 1 i1 N B N T k k Tq, Nk,t,3 1 LN,M 1 fNk ,Mj,Nk,t h L N,M Nk,Mj,t h nMj,t h M 1 j1 NT = number of distributions NB = number of size bins Coagulation Over Multiple Structures Total volume concentration in bin k of distribution N v Nk,t (15.21) NV vq,Nk,t q1 Number concentration in bin k of distribution N v Nk,t n Nk,t Nk (15.22) Coagulation Over Multiple Structures Volume fraction of coagulated pair VIi,Mj Ii Mj partitioned into bin k of distribution N Nk 1 VIi,Mj,t h Nk Nk 1 Nk,t h VIi,Mj fIi,Mj,Nk 1 fIi,Mj,Nk 1 1 0 (15.20) Nk VIi,Mj Nk 1 k NB Nk -1 VIi,Mj Nk VIi,Mj Nk k1 all other cas es k NB dn (No. cm-3) / d log10Dp Coagulation Over Multiple Structures Fig. 15.5 dn (No. cm-3) / d log10Dp Coagulation Over Multiple Structures Fig. 15.5 dn (No. cm-3) / d log10Dp Coagulation Over Multiple Structures Fig. 15.5 Particle Flow Regimes Knudsen number for air a Kna,i ri Mean free path of an air molecule 2a 2a a a v a va Thermal speed of an air molecule va (15.23) (15.24) (15.25) 8k BT M Particle Reynolds number Re i 2ri V f ,i a (15.26) Particle Flow Regimes T = 292 K, pa = 999 hPa, and p = 1.0 g cm-3 105 1 10 Knudsen number Reynolds number 10-3 2 -1 Diffusion coef. (cm s ) -7 10 -1 1 10 0.01 0.1 1 10 100 1000 Particle Diameterm) ( Fig. 15.6 Particle Flow Regimes Continuum regime Kna,i« 1 --> ri » a and particle resistance to motion is due to viscosity of the air. Free molecular regime Kna,i » 10 --> ri « a and particle resistance to motion is due to inertia of air molecules hit by particles. Example 15.2 T ---> va ---> a ---> a ---> a ---> Kna,i = 288 K ri = 0.1 m = 4.59 x 104 cm s-1 = 1.79 x 10-4 g cm-1 s-1 = 0.00123 g cm-3 = 6.34 x 10-6 cm = 0.63 --> continuum regime Coagulation Kernel Coagulation kernel (rate coefficient) Brownian diffusion Convective Brownian diffusion enhancement Gravitational collection Turbulent inertial motion Turbulent shear Van der Waals forces Viscous forces Fractal geometry Diffusiophoresis Thermophoresis Electric charge Kernel = product of coalescence efficiency and collision kernel (15.27) i, j Ec oal,i,j Ki, j Brownian Diffusion Kernel Brownian motion Irregular motion of particle due to random bombardment by gas molecules Continuum regime Brownian collision kernel (cm3 partic. s-1) (15.28) B Ki, j 4 ri rj Dp,i Dp, j Particle diffusion coefficient (15.29) k BT Dp,i Gi 6ri a Cunningham slip-flow correction to particle resistance to motion (15.30) Gi 1 Kna,i A Bexp C Kna,i Brownian Diffusion Kernel Free molecular regime Brownian collision kernel (cm3 partic. s-1) (15.31) 2 B 2 Ki, j ri rj v p,i v 2p, j Particle thermal speed (15.32) v p,i 8k B T M p,i Interpolate between continuum and free molecular regimes (15.33) 4 ri rj D p,i D p, j B Ki, j 4 D p,i D p, j ri rj 2 ri r j 2i 2j v p,i v 2p, j ri rj Brownian Diffusion Kernel Mean distance from center of a sphere reached by particles leaving the sphere's surface and traveling a distance p,i (15.34) 2ri p,i 3 i 32 2 2 4ri p,i 6ri p,i Particle mean free path (cm) p,i 2ri (15.34) 8Dp,i vp,i Brownian Diffusion Enhancement Eddies created in the wake of a large, falling particle enhance diffusion to the particle surface Brownian diffusion enhancement collision kernel K B 0.45Re1/3 Sc1/3 j p,i DE i, j Ki, j B 1/ 2 Sc1/3 K 0.45Re j p,i i, j Particle Schmidt number a Scp,i D p,i (15.35) Re j 1; rj ri Re j 1; rj ri (15.36) Gravitational Collection Collision and coalescence when one particle falls faster than and catches up with another Differential fall speed collision kernel (15.37) 2 GC Ki, j Ec oll,i,j ri rj Vf ,i V f ,j Collection (coalescence) efficiency 60EV,i, j EA,i, j Re j Ecoll,i, j 60 Re j Ecoll,i,j simplifies to EVi,j when Rej « 1 (viscous flows) EAi,j when Rej » 1 (potential flows) (15.38) rj ri Gravitational Collection 2 0.75ln 2Sti, j 1 EV ,i,j Sti, j 1.214 0 EA,i,j (15.39) Sti, j 1.214 Sti, j 1.214 2 S ti,j S ti,j 0.5 2 Stokes number Sti, j V f ,i V f , j V f ,i rj g for rj≥ri Turbulent Inertia and Shear Collision kernel due to turbulent inertial motion Collision between drops moving relative to air TI Ki, j 34 d 1 4 ri rj g a (15.40) Vf ,i V f ,j 2 Collision kernel due to turbulent shear Collisions due to spatial variations in turbulent velocities of drops moving with air (15.41) 12 TS 8 d Ki, j 15 a ri r j 3 k = dissipation rate of turbulent energy per gram (cm2 s-3) Comparisons of Coagulation Kernels 10 -13 10 10-15 Diff. enhancem ent Turb. shear Turb. inertia Settling 10-17 0.01 0.1 1 10 Radius of second particlem) ( -9 10 Settling 10-11 Turb. inertia Brownian -13 10 Kernel -11 Brownian particle -1 -1 3 -1 (cm particle s-1s) ) -9 10 Total 10-7 3 Total Coagulation kernel (cm 10-7 3 Kernel (cm3 particle s ) particle -1 -1 -1 -1 s ) Coagulation kernels when particle of (a) 0.01 m and (b) 10 m in radius coagulate at 298 K. -15 Turb. shear 10 Diff. enhancem ent -17 10 0.01 0.1 1 10 Radius of second particlem) ( Fig. 15.7 Van der Waals/Viscous Forces Van der Waals forces Weak dipole-dipole attractions caused by brief, local charge fluctuations in nonpolar molecules having no net charge Viscous forces Two particles moving toward each other in viscous medium have diffusion coefficients smaller than the sum of the two Van der Waals/viscous collision kernel 1 W c,i,j V B B Ki, j Ki, j VE,i, j 1 K i,j Wc,i, j 1 Wk ,i,j (15.42) 4 Dp,i Dp, j 2 2 v p,i v p, j ri rj 4 Dp,i Dp,j 2 v 2p,i v p, j ri rj 1 Van der Waals/Viscous Forces Free-molecular regime correction (15.43) dE r d2 EP,i, j r P,i,j r 2 dr dr 2 1 Wk,i, j r dr 2 r r 2 ri rj kB T i j 1 r dEP,i, j r exp EP,i, j r k T 2 dr B Free-molecular regime correction Wc,i, j Di,j (15.44) 1 EP,i, j r dr ri rj r exp 2 ri r j Dr,i,j k T r B Van der Waals/Viscous Forces Van der Waals interaction potential (15.46) 2 2 r ri rj 2ri rj 2ri rj AH EP,i, j r ln 2 2 2 6 r2 r r 2 2 r ri rj r ri rj i j Particle pair Knudsen number Kn p (15.47) 2p,i 2p, j ri rj Van der Waals/Viscous Forces Correction factor Van der Waals/viscous correction factor Fig. 15.8 Fractal Geometry Fractals Particles of irregular, fragmented shape Fractal (outer) radius of agglomerate (15.48) r f ,i rs Ni1 D f Number of spherules in aggregate i Ns,i s (15.49) Fractal Geometry Mobility radius (15.50) 0.7 rf ,i D f 1 rm,i MAX , rf ,i , rA,i 2 ln r r 1 f ,i s Area-equivalent radius (15.51) 2 3 1 2 Df 2 rA,i rs MAXNs,i , MIN 1 Ns,i 1 , D f Ns,i 3 3 Fractal Geometry Brownian collision kernel modified for fractals B Ki, j 4 rc,i rc, j Dm,i Dm, j rc,i rc, j rc,i rc, j 2m,i 2m, j (15.52) 4 Dm,i Dm, j 2 v p,i v 2p, j rc,i rc, j Modified Brownian Collision Kernels partic. -1 -1-1 -1 3 3 (cm Kernel (cm particle s ) s ) -4 10 -5 10 10-6 Spherical, no van der Waals Spherical, with van der Waals Fractal, no van der Waals Fractal, with van der Waals -7 10 -8 10 Volume-equivalent diameter of first particle=10 nm 10-9 0.01 0.1 1 Volume-equivalent diameter of second particle m)( Fig. 15.9 partic. -1 -1-1 -1 (cm 3 3 s ) s ) Kernel (cm particle Modified Brownian Collision Kernels -7 10 Volume-equivalent diameter of first particle=100 nm Spherical, no van der Waals Spherical, with van der Waals Fractal, no van der Waals Fractal, with van der Waals -8 10 -9 10 0.01 0.1 1 Volume-equivalent diameter of second particle m)( Fig. 15.9 dn (No. -3 cm-3) dn (No. cm ) / d log D / d log1010Dpp Effect on Aerosol Evolution 5 4 10 3.5 105 5 3 10 2.5 105 2 105 1.5 105 1 105 5 104 0 100 Sum of all distributions Spheres, no van der Waals Box Model 0.01 0.1 P article diameter (D , m) p 8s 1m 2m 3m 5m 10 m 15 m 20 m 30 m 45 m 1 Fig. 15.10 -3 dn (No. cm ) / d log D 1010D dn (No. cm-3) / d log pp Effect on Aerosol Evolution 4 105 Sum of all distributions Fractal, with van der Waals Box model 3 105 8s 1m 2m 3m 5m 10 m 5 2 10 1 105 0 100 0.01 0.1 P article diameter (D , m) p 1 Fig. 15.10 Diffusiophoresis/Thermophoresis/Charge Diffusiophoresis Flow of aerosol particles down concentration gradient of gas due to bombardment of particles by the gas as it diffuses down same gradient Thermophoresis Flow of aerosol particles from warm to cool air due to bombardment of particles by gases in presence of temperature gradient. Electric charge Opposite-charge particles attract due to Coulomb forces Diffusiophoresis/Thermophoresis/Charge Collision kernel for diffusiophoresis, thermophoresis, charge, other kernels Ki, j exp 4BP,i Ci, j 4BP,i Ci, j TI KTS 1 Ki,Bj Ki,DE K j i,j i, j Mobility (15.54) Vf ,i V f ,i Dp,i Gi BP,i FG FD 6ari kBT Particle diffusion coefficient Dp,i BP,i k BT (15.57) Diffusiophoresis/Thermophoresis/Charge Diffusiophoresis, thermophoresis, charge terms Th Df (15.58) e Ci, j Ci, j Ci,j Ci, j Th Ci, j (15.59) 51 3Kna,i p 2a 5 pKna,i pa 12ri a a 2.5 pKna,i a rj T Ts, j Fh,L, j (15.60) 0.74Dv md rj v v,s Fv,L, j Df Ci, j 6a ri Gi mv a Ci,e j Q i Q j (15.61) Collision Efficiency for Cloud-Aerosol Coagulation 0 Collision efficiency 10 =100, q=2 -1 10 d 10-2 =0, q=0 d -3 10 -4 10 =0, q=2 d =100,q=0 d r =42 m large -5 10 0.001 0.01 0.1 1 Radius of aerosol particlem) ( 10 Fig. 15.11 3 partic. -1 -1 Kernel (cm3 particle-1 s-1) s ) Collision Kernel for Cloud-Aerosol Coagulation 10-2 -3 10 Total -4 10 Grav. -5 10 Turb. shear -6 10 -7 Turb. Inert. 10 Br. Dif. Enhanc. 10-8 Brownian r =42 m -9 large 10 10-10 0.001 0.01 0.1 1 10 Radius of small particlem) ( Fig. 15.12