The 741 opAmp DC and Small Signal Analysis Jeremy Andrus For Engineering 332 May 15, 2002 Prof.

Download Report

Transcript The 741 opAmp DC and Small Signal Analysis Jeremy Andrus For Engineering 332 May 15, 2002 Prof.

The 741 opAmp
DC and Small Signal Analysis
Jeremy Andrus
For Engineering 332
May 15, 2002
Prof. Ribeiro
Overview: Five Parts of the 741





Biasing Currents
Input Stage
Second Stage
Output Stage
Short Circuit Protection
Overview: 741 Schematic
HI
Q12
Q13 b
Q13 a
Q14
Q15
Q9
Q8
Q19
R6
27k
Q18
Vo
Vi n+
R10
40k
Vi nQ1
R7
27k
Q2
Q21
R5
39k
Q20
Cc
Q3
Q4
Q23
30p
Q7
Q16
Q17
Q10
Q6
Q5
R8
100
R3
50k
R4
5k
R1
1k
R2
1k
Q22
Q24
R11
50k
LO
Q11
R9
50k
Biasing Current Sources
Q12
Q9
Q8
R5
39k
Q11
Q10
R4
5k

Generates the reference bias current
through R5
Biasing Current Sources:
DC Analysis

The opAmp reference current is given by:
Iref

VCC  VEB12  VBE11   VEE
R5
For Vcc=Vee=15V and VBE11=VBE12=0.7V,
we have IREF=0.73mA
Input Stage
Vi n+
Vi nQ1
Q2
Q3
Q4
Q7
Q6
Q5
R3
50k
R1
1k


R2
1k
The differential pair, Q1 and Q2 provide the main input
Transistors Q5-Q7 provide an active load for the input
Input Stage:
DC Analysis - 1

Assuming that Q10 and Q11 are
matched, we can write the equation from
the Widlar current source:
 IREF 
VT  ln 

I
 C10 

IC10  R4
Using trial and error, we can solve for
IC10, and we get: IC10=19A
Input Stage:


DC Analysis -2
From symmetry we see that IC1=IC2=I,
and if the npn  is large, then IE3=IE4=I
Analysis continues:
Input Stage:
DC Analysis -3

Analysis of the active load:
Second (Intermediate) Stage
Q13 b
Q13 a
Cc
30p
Q16
Q17
R9
50k
R8
100


Transistor Q16 acts as an emitter-follower giving
this stage a high input resistance
Capacitor Cc provides frequency compensation
using the Miller compensation technique
Second Stage:
DC Analysis




Neglecting the base current of Q23, IC17
is equal to the current supplied by Q13b
IC13b=0.75IREF where P >> 1
Thus: IC13b=550uA=IC17
Then we can also write:
VBE17
IC16
IE16
 IC17 
VT  ln 

I
 S 
IB17 
618mV
IE17  R8  VBE17
R9
16.2A
Output Stage
Q14
Q15
Q19
R6
27k
Q18
Vo
R10
40k
R7
27k
Q21
Q20
Q23


Provides the opAmp with a low output resistance
Class AB output stage provides fairly high current load
capabilities without hindering power dissipation in the IC
Output Stage:
DC Analysis



Q13a delivers a current of 0.25IREF, so we
can say: IC23=IE23=0.25IREF=180A
Assuming VBE18 = 0.6V, then IR10=15A,
IE18=180-15=165A and IC18=IE18=165A
IC19=IE19=IB18+IR10=15.8A
Short Circuit Protection
Q24
Q22
R11
50k


These transistors are normally off
They only conduct in the event that a large
current is drawn from the output terminal (i.e. a
short circuit)
DC Analysis Summary
DC Collector Currents of the 741 (mA)
Q1
9.5
Q8
19
Q13b
Q2
9.5
Q9
19
Q14
Q3
9.5
Q10
19
Q15
Q4
9.5
Q11
730
Q16
Q5
9.5
Q12
730
Q17
Q6
9.5
Q13a 180
Q18
Q7
10.5
550
154
0
16.2
550
165
Q19
Q20
Q21
Q22
Q23
Q24
15.8
154
0
0
180
0
741 opAmp Simulation: Schematic
HI
Rfeedbac k2
Vo
Rfeedbac k1
Q12
Q13b
Q13a
Vin1k
Q14
VOFF = 0V
VAMPL = 1mV
FREQ = 1k
Q15
Q9
Q8
20k
Vin
Q19
R6
27k
Vin+
Q18
Vo
Vin+
R10
40k
VinQ1
0
R7
27k
Q2
Q21
R5
39k
Q20
Cc
Q3
Q4
Q23
Inverting Amplifier with a gain of 20
30p
Q7
Q16
Q17
Q6
Q5
R8
100
R3
50k
R1
1k
15Vdc
Vcc
R2
1k
Q22
Q24
Vee
R11
50k
-15Vdc
0
LO
R4
5k
LO
Q10
HI
Q11
R9
50k
741 opAmp Simulation: Input
1.0mV
0.5mV
1mV Amplitude
0V
-0.5mV
-1.0mV
0s
1.0ms
2.0ms
V(Vin:+)
Time
3.0ms
4.0ms
741 opAmp Simulation: Output
20mV
20mV Amplitude
0V
Inverted output
-20mV
0s
1.0ms
V(Vo) - 28.234mV
2.0ms
Time
3.0ms
4.0ms
Conclusions

The 741 is a versatile opAmp that can be
used in a multitude of different ways

When you break it down into the different
components, it’s operation is actually
understandable and comprehendible