 Vacuum Polarization and the impact of BaBar data Michel Davier Laboratoire de l’Accélérateur Linéaire, Orsay QWG Workshop 2007 October 17 - 20, 2007, DESY   hadrons  [email protected].

Download Report

Transcript  Vacuum Polarization and the impact of BaBar data Michel Davier Laboratoire de l’Accélérateur Linéaire, Orsay QWG Workshop 2007 October 17 - 20, 2007, DESY   hadrons  [email protected].


Vacuum Polarization and the impact of
BaBar data
Michel Davier
Laboratoire de l’Accélérateur Linéaire, Orsay
QWG Workshop 2007
October 17 - 20, 2007, DESY


hadrons

[email protected]
1
Essentials of Hadronic Vacuum Polarization
vacuum polarization modifies the interacting electron charge
 (s ) 
 (0)
1   (s )
with:
 (s )  4 Re  (s )   (0)
photon vacuum polarization function (q2)
Leptonic lep(s) calculable in QED. However, quark loops are modified by long-distance
hadronic physics, cannot (yet) be calculated within QCD (!)
Born:  (0) (s )   (s )  /  (s ) 
Way out: Optical theorem
(unitarity) ...
... and subtracted
dispersion relation for
(q2) (analyticity)
 0 [eehadrons()]
12 Im (s) 
 R(s)
 pt
]  |
Im[
Im  (s)
 (s )   (0)   ds
0
s(s  s )  i
s

... and equivalently for a [had]
2
hadrons |2

s
R(s)
had (s )  
Re  ds
3
s(s  s )  i
0
had
a
2

3 2


4 m2
ds
K (s )
s
R (s )
2
The Muonic (g –2)
The Situation 1995
Contributions to the Standard
Model (SM) Prediction:
g 2
a  
 
2


aQED
Source
(a)
Reference
QED
~ 0.1  10–10
[Schwinger ’48 &others (Kinoshita)]
Hadrons
~ (154  3.5) 
10–10
[Eidelman-Jegerlehner ’95 & others]
Z, W exchange
~ 0.2  10–10
[Czarnecki et al. ‘95 & others]
ahad 

3 2
2


ds
4 m2
K (s )
s
R (s )

ahad

aweak
Dominant uncertainty from
lowest order hadronic piece.
Cannot be calculated from
QCD (“first principles”) – but:
we can use experiment (!)
h
a
d


”Dispersion relation“
had
...


3
Contributions to the dispersion integral
2
3 (+,)
4
> 4 (+KK)
1.8 - 3.7
3.7 - 5 (+J/, )
5 - 12 (+)
12 - 
< 1.8 GeV
ahad,LO
12%
5%
5%
2%
1%
3%
2
72%
92%
0%
 2[ahad,LO]
1%
9%
4%
0%
0%
0%
6%
2
80%
92%
4
Improved Determinations of the Hadronic
Contribution to (g –2) and  (MZ 2)
Eidelman-Jegerlehner’95, Z.Phys. C67 (1995) 585
Since then: Improved determination of the dispersion integral:
better data
extended use of QCD
Energy [GeV]
Input 1995
Input after 1998
2m - 1.8
Data
Data (e+e– & ) (+ QCD)
1.8 – J/
Data
QCD
J/ - 
Data
Data + QCD
 - 40
Data
QCD
40 - 
QCD
QCD
Improvement in 4 Steps:
Inclusion of precise  data using SU(2) (CVC)
Alemany-Davier-Höcker’97, Narison’01, Trocóniz-Ynduráin’01, + later works
Extended use of (dominantly) perturbative QCD
Martin-Zeppenfeld’95, Davier-Höcker’97, Kühn-Steinhauser’98, Erler’98, + others
Theoretical constraints from QCD sum rules and use of Adler function
Groote-Körner-Schilcher-Nasrallah’98, Davier-Höcker’98, Martin-OuthwaiteRyskin’00, Cvetič-Lee-Schmidt’01, Jegerlehner et al’00, Dorokhov’04 + others
Better data for the e+e–   + – cross section and multihadron channels
CMD-2’02 (revised 03), KLOE’04, SND’05 (revised 06), CMD-2’06, BaBar’04-06
5
Goals of the BaBar ISR Program
Precise measurements of cross section for all significant
processes, e+e hadrons, from threshold to ~4-5GeV
 Measure , KK channels with high precision
 Summing up exclusive cross sections ==>Improve the precision of R
 Study spectroscopy of JPC=1−− states and their decays
M. Davier et al., 2003
 0 (e e  hadrons( ))
R( s ) 
 pt (e e      )
s
6
Exclusive Channels with BaBar ISR
• systematic program underway using ISR from (4S) energies, taking
advantage of high luminosity (B-factory)
• statistics comparable to CMD-2/SND for Ecm<1.4 GeV, much better than
DM1/DM2 above
• full energy range covered at the same time
• channels identified using particle ID and kinematic fitting
• systematic uncertainties at 5-10% level
• large acceptance for hadronic system (boosted opposite to ISR photon)
ISR
X = 2E /Ecm
d (s, x )
 H (s, x, )   0 (s (1  x ))
dxd (cos )
2E
  2  2x  x 2 x 2 
H (s, x, ) 

,
x



 x  sin2 
2 
s
H is radiation function
7
BaBar ISR: e+ehadrons
 Reactions for which results have been published :
 pp
PRD 73, 012005 (2006)
 0
PRD 70, 072004 (2004)
 22, K+K- ,
PRD 71, 052001 (2005)
 K+K-  K+K- 00 , 2K+2KPRD 76, 012008 (2007)
 33, 2200, K+K-22
PRD 73, 052003 (2006)
 New results presented last Summer :
 K+K0, KSK, K+Kh,
 LL , LS0 , S0S0
BaBar Preliminary
submitted to PRD e-Print: arXiv:0709.1988 [hep-ex]
 00
BaBar Preliminary


0




0


 2 2  ,2 2 h, KK    , KK  h
accepted by PRD e-Print: arXiv:0708.2461 [hep-ex]
 Work in progress on :
 , K+K, 30
 Inclusive R
8
BaBar ISR:
0
errors include systematics
SND
huge discrepancy with DM2
BaBar
DM2
contribution to ahad (1.05-1.8 GeV) :
• all before BaBar
2.45  0.26  0.03
• all + BaBar
2.79  0.19  0.01
• all – DM2 + BaBar
3.25  0.09  0.01
x1010
9
BaBar ISR:
22
contribution to ahad (<1.8 GeV) :
• all before BaBar
14.20  0.87  0.24
• all + BaBar
13.09  0.44  0.00
x1010
10
BaBar ISR:
33
BaBar
contribution to ahad (<1.8 GeV) :
• all before BaBar
0.10  0.10
• all + BaBar
0.108  0.016
x1010
11
BaBar ISR:
2220
BaBar
contribution to ahad (<1.8 GeV) :
• all before BaBar
1.42  0.30  0.03
• all + BaBar
0.890  0.093
x1010
12
BaBar ISR:
+

0
0

Only statistical errors plotted
BaBar
preliminary
ψ ->00J/ψ(->)
J/ψ
•Previous situation chaotic
•Preliminary syst. error: 8% in peak 5%
•Good agreement with SND <1.4 GeV
•Huge improvement >1.4 GeV
•First measurement >2.5 GeV
13
BaBar ISR: +00
--substructure
BaBar
preliminary
MC
Intermediate states:
0
 large and first seen
0 f0980
a11260
14
BaBar ISR: ++0
Cross sections of submode:
h  h0

X =  3  0 3 : from
subtraction /h
h0

3
15
BaBar ISR:
BaBar
preliminary


 
BaBar,3


BaBar
preliminary
f0(980)
1st measurement
BaBar,3
1.35  0.03
0.45  0.14
1.66  0.01
0.22  0.04
16
BaBar ISR: h
• ~4,300 events selected
• first measurement
BaBar
preliminary
17
BaBar ISR: KSK , KK0
KSK-+
K  K 
and
K 0 K 0
Dominant states:
K*(980)K and
K2*(1430)K
K+K-0
Isoscalar channel dominates
over isovector
Parameters (1680):
PDG
m=172320 MeV,
168020
 = 37175 MeV,
15050
ee= 58060 eV,
Bh/BK*K 1/3
18
BaBar ISR: KK , KK00
K+K-+ -
Substructure in the final state
K*(892) - 1 per event
K+K-0 0
K+K-0 0
K1(1270),K1(1400) – 1+
K+K-+ -
~ 1500
19
BaBar ISR:KKKK,KK0,KKh
K K K K
K+K- dominated
J/Y
KK0
KKh
First measurement !
20
BaBar ISR: KK
Cross section
Substructures
K*0(892)

first measurement
J/
21
Present BaBar Measurements
only statistical errors
syst. 5-10%
to obtain R in the energy range 1-2 GeV the processes
, 30, 40, K+K-, KSKL, KSKL, KSK+ 0
remain to be measured
22
Evaluating the Dispersion Integral
use data
use QCD
Agreement between Data (BES)
and pQCD (within
correlated systematic
errors)
use QCD
Better agreement
between exclusive
and inclusive (2)
data than in 19971998 analyses
23
Update for ICHEP-Tau06
ahad [ee] = (690.9 ± 4.4)  10 –10
a [ee] = (11 659 180.5 ± 4.4had ± 3.5LBL ± 0.2QED+EW)  10 –10
including:
Hadronic HO
– ( 9.8 ± 0.1)  10 –10
Hadronic LBL
+ (12.0 ± 3.5)  10 –10
Electroweak
QED
(15.4 ± 0.2)  10 –10
(11 658 471.9 ± 0.1)  10 –10
Knecht-Nyffeler, Phys.Rev.Lett. 88 (2002) 071802
Melnikov-Vainshtein, hep-ph/0312226
Davier-Marciano, Ann. Rev. Nucl. Part. Sc. (2004)
Kinoshita-Nio (2006)
BNL E821 (2004):
aexp = (11 659 208.0  6.3) 10 10
Observed Difference with Experiment (DEHZ)
a [exp] – a [SM] =
(27.5 ± 8.4)  10 –10
 3.3 „standard deviations“
24
Conclusions and Outlook
Hadronic vacuum polarization is still the dominant systematics for SM prediction
of the muon g – 2
Significant step in precision from new experimental input
CMD-2 + SND for 2
BaBar for multipion channels
Precision of SM prediction (5.6) now exceeds experimental precision (6.3)
SM prediction for a differs by 3.3  [e+e – ] from experiment (BNL 2004)
In the next months many new results expected
KLOE 2 (different analyses)
BaBar 2, 2K, remaining multihadrons in 1-2 GeV range
VEPP-2000 in the longer run
vacuum polarization calculations in line for the next challenges
new g-2 measurements
precision EW measurements (Tevatron, LHC, ILC)
25