Linear Colliders R. Brinkmann, DESY EPS-HEP Conference, Aachen, July 17, 2003 EPS-HEP Aachen 2003 R.
Download ReportTranscript Linear Colliders R. Brinkmann, DESY EPS-HEP Conference, Aachen, July 17, 2003 EPS-HEP Aachen 2003 R.
Linear Colliders R. Brinkmann, DESY EPS-HEP Conference, Aachen, July 17, 2003 EPS-HEP Aachen 2003 R. Brinkmann, DESY The energy and luminosity challenges for a future e+e- linear collider: “It’s only an order of magnitude in energy (0.5 1 TeV) and three to four orders of magnitude in luminosity (>1034 cm-2 s-1) from the SLC…” EPS-HEP Aachen 2003 R. Brinkmann, DESY Lessons from the SLC • Sophisticated on-line modeling of non-linear beam physics. • Correction techniques (trajectory and emittance), from hands-on by operators to fully automated control, slow/fast feedback theory and practice. 10 10 9 9 8 8 sX * sy 7 6 6 5 5 2 7 4 SLC Design (sx * sy) 4 sX 3 3 sY 2 2 1 1 0 0 1985 1990 1991 1992 1993 1994 1996 1998 Year EPS-HEP Aachen 2003 R. Brinkmann, DESY s x*s y (microns ) New Territory in Accelerator Design and Operation Beam Size (microns) IP Beam Size vs Time FFTB beamline at the end of the SLAC linac. FFTB Collaboration BINP (Novosibirsk/Protvino) DESY Fermilab 10 IBM 1997 B Kawasaki KEK LAL (Orsay) Number of Occurrences 8 6 4 2 MPI(Munich) 0 0 25 50 75 Beam Size (nm) Rochester SLAC EPS-HEP Aachen 2003 1994 Vertical beam size of 60-70 nm … demagnification needed for any LC. R. Brinkmann, DESY 100 Linear Collider Parameter Overview f / GHz E-cms / GeV g / MV/m Lumi / 1034 Power p. beam / MW sy at IP / nm Beamstrahlung dB / % Site length / km Site power / MW Cost§ (stage-I) NLC/JLC 11.4 500 – 1000 TESLA 1.3 500 – 800 50 2–3 6.9 – 13.8 SLC 2.9 100 23 – 35 3.4 – 5.8 11.2 – 17 CLIC 30 3000 – 5000 150 ~10 ~15 2.7 – 2.1 3.2 – 4.3 5 – 2.8 3.4 – 7.5 1 21 500 <0.1 30 195 – 350 33 140 – 200 ~35 ~400 3.5 ~3.5B$ 3.14B€+7k p.y. ~20 .0003 0.04 ? § numbers quoted at Snowmass 2001, no pre-operation, escalation and contingency included EPS-HEP Aachen 2003 R. Brinkmann, DESY International Linear Collider Technical Review Committee 2nd Report 2003 (480 pages), Chair: G. Loew, SLAC www.slac.stanford.edu/xorg/ilc-trc/2002/2002/report/03rep.htm • Asses technical status of 500 GeV LC designs • Potential for reaching higher energies • Identify R&D work to be done ranking list R1(feasibility demonstration) … R4(desirable for technical/cost optimisation) EPS-HEP Aachen 2003 R. Brinkmann, DESY 500 ( 800) GeV e+e- Linear Collider Based on superconducting linac technology EPS-HEP Aachen 2003 R. Brinkmann, DESY Why superconducting? • High efficiency ACbeam (>20%, ~10% normal c.) • Low frequency: – Long pulses with low RF peak power – Small beam perturbations from wakefields – Intra-train feedback on beam orbit, energy, luminosity… • First proposed in 1960s (M. Tigner)… show stopper was too low acc. Gradient, too high cost EPS-HEP Aachen 2003 R. Brinkmann, DESY Accelerating gradient on test stand reached 25 MV/m on average for 1999/2000 cavity production cw-cavity tests, 1st and best results 35 best test g [MV/m] 30 25 20 15 10 1st test 5 0 1/1/95 5/15/96 9/27/97 2/9/99 date of measurement EPS-HEP Aachen 2003 R. Brinkmann, DESY 6/23/00 Test of complete accelerator modules in the TTF linac at DESY (>13,000h beam operation 1997 - 2003) EPS-HEP Aachen 2003 R. Brinkmann, DESY Higher performance cavities: energy reach 800 GeV 1st step: no add. investment, 2nd step: add cryo+RF power TESLA luminosity vs. cm-energy, baseline & upgrade L / 10^34 cm^-2 s^-1 7 6 5 4 no add. cost 3 RF & cryo upgrade 2 1 0 400 500 600 700 800 900 E_cm / GeV EPS-HEP Aachen 2003 R. Brinkmann, DESY 1000 Improvement of Nb surface quality with electro-polishing (pioneering work done at KEK) BCP EP • Several single cell cavities at g > 40 MV/m • 4 nine-cell cavities at ~35 MV/m EPS-HEP Aachen 2003 R. Brinkmann, DESY CHECHIA test in pulsed mode TESLA 500 – 800 design EPS-HEP Aachen 2003 R. Brinkmann, DESY NLC X-band technology (SLAC/KEK & coll. Inst.) SLC-like 20MV/m, 3 GHz 50MV/m (65 unloaded), 11.4GHz EPS-HEP Aachen 2003 R. Brinkmann, DESY The NLCTA with 1.8 m accelerator structures (ca 1997). Demonstration of Xband concept, wakefield control, beamloading compensation,… But: acc. Gradient limited < 40 MV/m EPS-HEP Aachen 2003 R. Brinkmann, DESY Structure damage from RF breakdown EPS-HEP Aachen 2003 R. Brinkmann, DESY Operation History of Several Test Structures 90 Unloaded Acceleration Gradient (MV/m) 80 Damage ( ) 6 17 Snowmass 2001 <1 3.5 70 60 50 40 30 20 10 0 DDS3 Vg = 12% c DS2S Vg = 5% c T20/T105 Vg = 5% c T53’s Vg = 3% c / 5% c 1500 hrs 1700 hrs 500 hrs 500 hrs (In Progress) Hours of Operation at 60 Hz EPS-HEP Aachen 2003 R. Brinkmann, DESY Test Structure Run History (T-Series 2003, not final version for linac) Unloaded Gradient (MV/m) 1 Trip per 25 Hrs NLC/JLC Goal: Less than 1 trip per 10 Hrs at 65 MV/m 400 ns Pulse Width No Observed Change in Microwave Properties Time with RF On (hr) EPS-HEP Aachen 2003 R. Brinkmann, DESY CLIC two-beam accelerator approach CERN & coll. Inst. EPS-HEP Aachen 2003 R. Brinkmann, DESY EPS-HEP Aachen 2003 R. Brinkmann, DESY P_rf and E_acc at CTF-2 vs pulse length CAS E_acc / MV/m 160 320 140 120 280 240 CTF-2 100 80 CLIC 3TeV 200 160 60 40 120 80 20 0 40 0 1 10 100 CAS gradient/MV/m CLIC design E_acc peak power/MW CLIC design P_rf 1000 rf pulse / ns Successful demonstration of 30 GHz twobeam concept at CTF-II But: serious structure damage from RF breakdown at high gradient EPS-HEP Aachen 2003 R. Brinkmann, DESY Systematic study of high-g RF breakdown/damage problem: RF breakdown vs. frequency damage vs. different material of irises (Cu, W, Mo) EPS-HEP Aachen 2003 R. Brinkmann, DESY Peak Accelerating field (MV/m) 200 150 100 3.5 mm tungsten iris 3.5 mm tungsten iris after ventilation 3.5 mm copper structure 3.5 mm molybdenum structure CLIC goal loaded CLIC goal unloaded 50 0 0 EPS-HEP Aachen 2003 0.5 1 1.5 No. of shots R. Brinkmann, DESY 2 2.5 3 x 10 6 CTF3 (under construction) LOW CURRENT BUNCH TRAIN COMBINATION streak camera images of beam in the ring 1st turn - 1st bunch train from linac time 2nd turn • First demonstration in June 2002 • Tested combination factors 4 & 5 3rd turn Final intensity profile 4th turn EPS-HEP Aachen 2003 R. Brinkmann, DESY combination factor 4 Luminosity challenge: beam quality & stability • Damping rings: emittances required ~factor 3…5 below best values obtained to date at SR sources and ATF-DR (KEK) • Wakefields fRF3 tighter alignment tolerances & more precise beam diagnostics for higher frequency linacs • Dynamic stability: higher rep. Rate of n.c. linacs compensates (partially) for tighter tolerances EPS-HEP Aachen 2003 R. Brinkmann, DESY LC DR design emittances vs. achievements 12 eps_y / pm 10 ATF ESRF 8 6 X-band ALS 4 TESLA 2 CLIC 0 0 2 4 6 eps_x / nm EPS-HEP Aachen 2003 R. Brinkmann, DESY 8 10 12 Luminosity stability: “Start-to-end” simulations, including ground motion 50 s EPS-HEP Aachen 2003 2s R. Brinkmann, DESY Power spectral density Ground motion: varies form “quiet” (model A) to “noisy” (model C), depending on site EPS-HEP Aachen 2003 1 p( f ) 4 f R. Brinkmann, DESY Seismic measurements: TESLA LC central site (Ellerhoop) more quiet than HERA (data taken on a Monday, 0.00h – 1.00h) HERA tunnel Ellerhoop (barn) EPS-HEP Aachen 2003 R. Brinkmann, DESY There are a number of subtle effects in LC beam dynamics… e.g. the banana effect (amplification of bunch deformations during collision): (TESLA beam-beam simulation) EPS-HEP Aachen 2003 R. Brinkmann, DESY Choice of technology: hybrid collider?? superconducting Normal conducting Doesn’t work…. EPS-HEP Aachen 2003 R. Brinkmann, DESY Towards a Global Linear Collider… • International Linear Collider Steering Committee (Chair: M. Tigner, Cornell) will select the linac technology with the help of a group of “Wise persons” (~ mid 2004) • Establish GLC design group Technical Design Report as basis for site selection and project approval • Worldwide organisation at political level • Start project construction ~2007 EPS-HEP Aachen 2003 R. Brinkmann, DESY