Thermal Properties of Materials Li Shi, PhD Assistant Professor Department of Mechanical Engineering & Center for Nano and Molecular Science and Technology, Texas Materials Institute The.
Download ReportTranscript Thermal Properties of Materials Li Shi, PhD Assistant Professor Department of Mechanical Engineering & Center for Nano and Molecular Science and Technology, Texas Materials Institute The.
Thermal Properties of Materials Li Shi, PhD Assistant Professor Department of Mechanical Engineering & Center for Nano and Molecular Science and Technology, Texas Materials Institute The University of Texas at Austin Austin, TX 78712 www.me.utexas.edu/~lishi [email protected] Outline • Thermal Issues in Nanoscale Devices • Microscale Thermal Transport Theory – Particle Transport -- Kinetic Theory of Gases -- Electrons in Metals -- Phonons in Insulators • Nano-engineer Thermal Properties of Materials -- Thin Films -- Nanowires and Nanotubes -- Bulk materials with embedded nanostructures 2 GMR Cu Interconnects 3 Thermal Issues in Si Nanotransistors Ju and Goodson, APL 74, 3005 IBM SOI Chip Lines: BTE results Hot spots! 4 Thermoelectric Cooling Venkatasubramanian et al. Nature 413, 597 2.5-25nm Bi2Te3/Sb2Te3 Superlattices Harman et al., Science 297, 2229 •Coefficient of Performance (COP) COP 2 Quantum dot superlattices CFC unit 1 Bi2Te3 0 0 1 2 3 4 5 ZT •Seebeck ZT: Figure of Merit coefficient ZT S 2 Electrical conductivity T Thermal conductivity Nano-engineer thermal properties of materials! 5 Courtesy of A. Majumdar Microscopic Origins of Heat Conduction --The Particle Nature Materials Dominant energy carriers Gases: Molecules Hot Metals: Electrons Hot - Insulators: Phonons (crystal vibration) Hot p Cold N2 Cold Cold 6 Mean Free Path for Intermolecular Collision for Gases D D Total Length Traveled = L Total Collision Volume Swept = pD2L Number Density of Molecules = n Total number of molecules encountered in swept collision volume = npD2L Average Distance between Collisions, mc = L/(#of collisions) Mean Free Path L 1 mc 2 npD L n : collision cross-sectional area 7 Effective Mean Free Path mc ~ 100 nm at atomospheric pressure Wall b: boundary separation Wall When b ~ mc, the effective mean free path: 1 1 1 mc b 8 Kinetic Theory of Particle Transport Cold u: energy u(z+z) qz u(z-z) z + z Net Energy Flux / # of Molecules z 1 q' z v z u z z u z z 2 z - z through Taylor expansion of u du du 2 q ' z v z z cos v dz dz Hot Integration over all the solid angles total energy flux 1 du dT 1 dT dT q z v Cv 3 dT dz 3 dz dz Thermal conductivity: 1 Cv 3 Specific heat capacity Velocity 9 Mean free path Drawbacks of Kinetic Theory • Assumes single particle velocity and single mean free path or mean free time. Breaks down when, vg(E) or E • Assumes local thermodynamics equilibrium: u=u(T) Breaks down when L ; t t • Cannot handle non-equilibrium problems Short pulse laser interactions High electric field transport in devices Boltzmann Transport Equation • Cannot handle wave effects Interference, diffraction, tunneling 10 Questions • Kinetic theory is valid for particles: can electrons and crystal vibrations be considered particles? • If so, what are C, v, for electrons and crystal vibrations? 11 Wave-Particle Duality of Electrons The double slit experiment Probability of finding an electron at position x 2 x Schrodinger eqn. for free electrons 2 d 2 E x 2 2m dx : electron wave function Electrons m: electron mass : Planck’s constant E: electron energy Traveling wave solution to ikx x e k Schrodinger’s eqn: k: wave vector = 2p/l A metal ring with perimeter L x k x eikx (x+L) = (x) k = 2np/L; n = ±1, ± 2, ± 3, ± 4, ….. 1-D k-space 2k 2 E 2m -6p/L -4p/L -2p/L 0 Quantization of energy 2p/L 4p/L 12 Fermi Parameters Fermi Energy – the highest occupied energy state at 0 K: 2 k F2 2 EF 3p 2e 2m 2m 1 2 Fermi Velocity: vF 3p e 3 m Fermi Temp: TF Metal 3 2 F: Work Function EF Vacuum Level Energy EF kB Band Edge Element Electron Density, e [1028 m-3] Cu 8.47 Au 5.90 Fe 17.0 Al 18.1 Fermi Energy EF [eV] 7.00 5.53 11.1 11.7 Fermi Temperature TF [104 K] 8.16 6.42 13.0 13.6 Fermi Wavelength lF [Å] 4.65 5.22 2.67 3.59 Fermi Velocity vF [106 m/s] 1.57 1.40 1.98 2.03 Work Function F [eV] 4.44 4.3 4.31 4.25 Effect of Temperature Occupation Probability, f Fermi-Dirac equilibrium distribution for the probability of electron occupation of energy level E at temperature T 1 f E E EF 1 exp k BT kBT 1 T=0K Vacuum Level Increasing T 0 Electron Energy, E EF Work Function, F Electronic Specific Heat and Thermal Conductivity Ee Ef E DE dE Energy density e V 0 Bulk metals: Density of states d e df Ce E DE dE dT dT 0 Specific Heat Thermal Conductivity e 2 EF 1 e Cev F e 3 Bulk Solids Increasing Defect Concentration Defect Scattering p 2 k BT Ce e k B Electron Scattering Mechanisms • Defect Scattering • Phonon Scattering • Boundary Scattering (Film Thickness, Grain Boundary) Phonon Scattering Temperature, T Grain 15 Grain Boundary Thermal Conductivity of Cu and Al 1 e Cev F e 3 Thermal Conductivity, k [W/cm-K] 10 Matthiessen Rule: 1 1 1 1 e defect boundary phonon 3 Copper 10 2 1 1 10 1 10 0 of a metal is dominated by the electronic contribution Aluminum Phonon Scattering Defect Scattering 10 0 10 1 10 2 Temperature, T [K} 10 3 16 Conditions • Since electrons are traveling waves, can we apply kinetic theory of particle transport? Two conditions need to be satisfied: • Length scale is much larger than electron wavelength or electron coherence length • Electron scattering randomizes the phase of wave function such that it is a traveling packet of charge and energy Can we treat crystal vibration as particles just like what we have done for electrons? 17 Crystal Vibration Interatomic Bonding Equation of motion with nearest neighbor interaction Energy Parabolic Potential of Harmonic Oscillator ro m Distance d 2 xn dt 2 g xn1 xn1 2 xn Traveling wave solution xn xo exp it expinKa 1-D Array of Spring Mass System Eb Spring constant, g M ass, m Equilibrium Position a Deformed Position 18 x n-1 xn x n+1 Dispersion Relation Spring constant, g Mass, m Equilibrium Position a Deformed Position x n-1 1 2g 1 cos Ka 2 m A al sti u o ng o L de o M ti s ou l Ac e s er v Edge of First ns a r T Brillouin Zone 0 Wave vector, K d dK d Speed of Sound: vs lim K 0 dK c ) TA ( c vg e LA ( c in d itu x n+1 Group Velocity: od M ) Frequency, xn p/a K 2p l 19 Two Atoms Per Unit Cell Lattice Constant, a m1 m2 d 2 xn dt 2 d 2 yn dt 2 xn g yn yn1 2 xn g xn1 xn 2 yn xn+1 yn LO Frequency, yn-1 Optical Vibrational Modes TO LA TA TO LO 0 Wave vector, K Oscillating out of phase against each other. Vg ~0 little contribution to p/a 20 Phonon Dispersion in GaAs LO 12 Frequency (10 Hz) 8 LO TO TO 6 LA LA 4 2 0 L TA 0.4 0.2 0 (111) Direction TA 0.2 Ka/p 0.4 0.6 (100) Direction 0.8 1.0 X 21 Allowed Wave Vectors A linear chain of N=10 atoms with two ends jointed u: atom displacement Solution: us ~uK(0)exp(-it)sin(Kx), x =sa B.C.: us=0 = us=N=10 x a K=2np/(Na), n = 1, 2, …,N Na = L Only N wavevectors (K) are allowed (one per mobile atom): K= -8p/L -6p/L -4p/L -2p/L 0 2p/L 4p/L 6p/L 8p/L p/a=Np/L 22 The Wave-Particle Duality of Crystal Vibration Energy Parabolic Potential of Harmonic Oscillator ro Distance Total Energy of a Harmonic Oscillator in a Parabolic Potential 1 u n 2 Eb Phonon: A particle carrying a quantum of vibrational energy, , which travels through the lattice Phonons follow Bose-Einstein statistics. Equilibrium distribution: 1 n 1 exp k BT n T 23 Energy of Lattice Vibration El p 1 n K , p 2 K , p K Dispersion Relation: Energy Density: p: polarization(LA,TA, LO, TO) K: wave vector K g El 1 l n D d V 2 p D(): Density of States, number of allowed wave vectors between and +d Lattice Specific Heat: d l Cl dT p d n dT D d 24 vs K Debye Approximation: g dg Debye Density D of States: 2p 2 d 2p 2vs3 2 2 Frequency, Debye Model vs K LA or TA branch Specific Heat in 3D: 0 T Cl 9k B D 3 D T 0 e x x 4 dx 2 x e 1 In 3D, when T << D, l T , Cl T 4 3 Wave vector, K Debye Temperature [K] D C(dimnd) Si Ge B Al vs 6p kB 1860 625 360 1250 394 2 1 3 Ga NaF NaCl NaBr NaI 240 492 321 224 164 p/a Phonon Specific Heat 10 7 C 3 kB 4.7 10 6 3 Specific Heat, C (J/m -K)3-K) (J/m Heat Specific 10 6 10 J 3 k B m3 K Diamond Each atom has Diamond a thermal energy of 3KBT 5 10 4 C T 33 CT 10 3 10 Classical Regime 2 D 1860 K 10 1 1 10 10 2 10 3 Temperature, T (K) 10 4 Temperature (K) In general, when T << D, l T d 1, Cl T d d =1, 2, 3: dimension of the sample Phonon Thermal Conductivity Kinetic Theory 1 kl Cl vs l 3 Phonon Scattering Mechanisms • Boundary Scattering • Defect & impurity Scattering • Phonon-Phonon Scattering 1 1 1 1 l defect boundary phonon Decreasing Boundary Separation kl l Increasing Defect Concentration Increasing Defect Concentration kl T d Phonon Defect Boundary Scattering 0.01 0.1 Temperature, T/D Boundary Defect 1.0 0.01 Phonon Scattering 0.1 Temperature, T/D 1.0 Phonon-Phonon Scattering • The presence of one phonon causes a periodic elastic strain which modulates in space and time the elastic constant (C) of the crystal. A second phonon sees the modulation of C and is scattered to produce a third phonon. n 1 1 exp k BT Decreasing Boundary Separation l phonon ~ exp(/bT) Increasing Defect Concentration phonon ~ exp(/bT) Phonon Boundary Defect Scattering 0.01 1.0 0.1 Temperature, T/D 28 Thermal Conductivity of Bulk Crystals 3 29 Effect of Impurity on Thermal Conductivity 10 3 Thermal Cond uctivity, k [W/cm-K] Diam ond 10 2 10 1 10 0 Increasing Defect Density 10 -1 10 -2 0 10 Defect Scattering Boundary Scattering 10 1 10 2 10 3 Temperature, T [K] 30 Why the effect of impurity is negligible at low T? Phonon-Impurity Scattering • Impurity change of local spring stiffness (acoustic impedance) • Scattering mean free path for phonon-impurity scattering: i r Decreasing Boundary Separation where r is the impurity concentration, and the scattering cross section l R/l4 for l >> R R2 for l << R l: phonon wavelength Increasing Defect Concentration R: radius of lattice imperfection Phonon Defect Boundary Scattering 0.01 1.0 0.1 Temperature, T/D Impurity and alloy atoms scatter only short- l phonons that are absent at31low T! k [W/m-K] Bulk Materials: Alloy Limit of Thermal Conductivity A Alloy Limit B 32 Phonon Scattering with Imbedded Nanostructures Phonon Scattering Spectral distribution of phonon energy (eb) / group velocity (v) v eb Nanostructures Atoms/Alloys Frequency, max 33 Long-wavelength or low-frequency phonons are scattered by imbedded nanostructures! Nanodot Superlattice InGaAs 0.8ML ErAs 5x1018 Si-doped InGaAs 0.6ML Si-Doped ErAs/InGaAs SL (0.4ML) 0.4ML Undoped ErAs/InGaAs SL (0.4ML) 0.2ML Plan View [11 0] 100 nm Cross-section 10 nm Images from Elisabeth Müller Paul Scherrer Institut Wueren-lingen und Villigen, Switzerland Courtesy of A. Majumdar Samples by: J.M. Zide, D.C. Driscoll, M.P.Hanson, J.D. Zimmerman, G. Zeng, J.E.Bowers, A.C. Gossard 34 (UCSB) Specular Phonon-boundary Scattering Phonon Reflection/Transmission TEM of a thin film superlattice critical angle incident l , t1 , or t2 l t1 1 reflected t2 interface Acoustic Impedance Mismatch (AIM) = (rv)1/(rv)2 l 2 t1 t2 transmitted 35 nl 2d cos lmin=50 100 50 frequency, Phonon Bandgap Formation in Thin Film Superlattices (i) wavevector, K n=1, l=100 n=2, l=50 frequency, (i) n=1, l=200 l (ii) n=2, =100 n=3, l=66 n=4, l=50 (ii) wavevector, K (A) (B) 36 Courtesy of A. Majumdar Diffuse Phonon-boundary Scattering Specular critical angle incident l , t1 , or t2 Diffuse l t1 1 reflected t2 interface l 2 t1 t2 transmitted Acoustic Mismatch Model (AMM) Khalatnikov (1952) Diffuse Mismatch Model (DMM) Swartz and Pohl (1989) E. Swartz and R. O. Pohl, “Thermal Boundary Resistance,” Reviews of Modern Physics 61, 605 (1989). D. Cahill et al., “Nanoscale thermal transport,” J. Appl. Phys. 93, 793 (2003). 37 Courtesy of A. Majumdar SixGe1-x/SiyGe1-y Superlattice Films Superlattice Period Thermal Conductivity (W/m-K) AIM = 1.15 15 Si/Si0.7Ge0.3 SL's 300 Å 150 Å 10 75 Å 45 Å Si0.9Ge0.1 (3.5 m) 5 Alloy limit Si/Si0.4Ge0.6 SL (150 Å) 0 50 100 150 200 250 300 Temperature (K) 350 400 With a large AIM, can be reduced below the alloy limit. Huxtable et al., “Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices,” Appl. Phys. Lett. 80, 1737 (2002). 38 Thin Film Thermal Conductivity Measurement 3 method (Cahill, Rev. Sci. Instrum. 61, 802) Metal line L Substrate Thin Film 2b I0 sin(t) V • I ~ 1 • T ~ I2 ~ 2 • R ~ T ~ 2 • V~ IR ~3 P 1 Ds 1 ip Pd T (2 ) ln 2 ln2 Lpk s 2 b 2 4 2 Lbk f 39 Nanowire Materials Sb2Te3 nanowires (potentially high ZT) (X. Li et al., USTC) Ge nanowires (B. Korgel, UT Austin) ZnO nanowires (Z.L. Wang, GaTech) SnO2 nanowires (Z.L. Wang, GaTech) 40 Thermal Measurements of Nanowires 1.5 Th (K) Suspended SiNx membrane Long SiNx beams T0 = 54.95 K 1.0 0.5 0.0 I -6 Q -4 -2 0 2 4 6 4 6 Current (A) 0.10 Pt resistance thermometer Ts (K) 0.08 T0 = 54.95 K 0.06 0.04 0.02 0.00 -6 Kim, Shi, Majumdar, McEuen, Phys. Rev. Lett. 87, 215502 Shi, Li, Yu, Jang, Kim, Yao, Kim, Majumdar, J. Heat Tran 125, 881 -4 -2 0 2 Current (A)41 Sample Preparation • Dielectrophoretic trapping • Wet deposition Pipet Nanostructure suspension Chip Spin • Direct CVD growth SnO2 nanobelt Nanotube bundle 42 Individual Nanotube Thermal Conductance Measurement Heating membrane Sensing membrane Th Ts Rs Ts Rh Sample Gs Qh t Q QL=IRL Beam, Gb Beam,Gb Q’ Environment T0 Q Q G Th Ts VTE V v I i Gb-1 Th G-1 Ts Gb-1 T0 T0 2QL Q Qh Q Gb (Ts T0 ) Qh QL Gb[(Th T0 ) (Ts43 T0 )] Thermal conductivity (W/m-K) SnO2 Nanobelts 15 64 nm 64 nm 10 53 nm 39 nm Collaboration: N. Mingo, NASA Ames 5 53 nm 53 nm, ti-1 =10t-1i, bulk 0 0 100 200 300 Temperature (K) Circles: Measurements Lines: Simulation •Diffuse phonon-boundary scattering is the primary effect determining the suppressed thermal conductivities 44 Shi et al., Appl. Phys. Lett. 84, 2638 (2004) Thermal Conductivity (W/m-K) Si Nanowires kbulk 135 W m K at 300K 60 Solid line: Theoretical prediction 50 115 nm Diameter 40 Si Nanowire 56 nm 30 Carbon Deposits 37 nm 20 10 22 nm 0 0 50 100 150 200 250 Temperature (K) 300 350 Li et al., Appl Phys Lett 83, 2934 (2003) • Phonon-boundary scattering is the primary effect determining the suppressed thermal conductivity except for the 22 nm sample, where boundary scattering alone can45not account for the measurement results. Si/SiGe Superlattice Nanowires Si/Si0.95Ge0.05 Si Li et al., Appl Phys Lett 83, 3186 (2003) Thermal Conductivity (W/m-K) SiGe 16 (a) 14 Si/Si0.7Ge0.3 superlattice film [7] 12 Si0.9Ge0.1 alloy film [7] 10 8 Alloy limit 6 4 83 nm Si/SixGe1-x nanowire 2 58 nm Si/SixGe1-x nanowire 0 0 50 100 150 200 250 Temperature (K) 300 350 46 Carbon Nanotubes Nanotube Electronics (Avouris et al., IBM) • Atomically-smooth surface, absence of defects: Long mean free path l & Strong SP2 bonding: high sound velocity v high thermal conductivity: = Cvl/3 ~ 6000 W/m-K 47 Thermal Conductivity (W/m-K) Carbon Nanotubes 105 104 1-3 nm CVD SWCN 103 14 nm MWCN bundle ~T2 102 101 100 10-1 ~ T 2.5 ~ T 1.6 10-2 100 10 nm SWCN CVD SWCN bundle 148 nm SWCN bundle 101 102 Temperature (K) 103 • An individual nanotube has a high ~ 2000-11000 W/m-K at 300 K • of a CN bundle is reduced by thermal resistance at tube-tube junctions 48 Challenges • Synthesis of high-thermal conductivity carbon nanotube films/composites for thermal management • Designing interfaces for low thermal conductance at high temperatures • Fabrication of thermoelectric coolers using low-thermal conductivity, high-ZT nanowire materials • Large-scale manufacturing of bulk materials with imbedded nanostructures to suppress the thermal conductivity AgPb18SbTe20 ZT = 2 @ 800K Hsu et al., Science 303, 818 (2004) AgSb rich 49