Bo Deng UNL B. Blaslus, et al Nature Mark O’Donoghue, et al Ecology 1998

Download Report

Transcript Bo Deng UNL B. Blaslus, et al Nature Mark O’Donoghue, et al Ecology 1998

Bo Deng
UNL
B. Blaslus, et al
Nature
1999
Mark O’Donoghue, et al
Ecology 1998
 An empirical data of a physical process P is a set of
observation time and quantities:
(ti j , yi j ), i  1,2,...,k j , j  1,2,...,l
with
t(i 1) j  ti j  0.
 The aim of mathematical modeling is to fit a mathematical form to
the data by one of two ways:
1. phenomenologically without a conceptual model
2. mechanistically with a conceptual model
 We will consider only mathematical models of differential equations:
 dx
  F ( x, p )
 dt
 x (0)  x0
with
t
having the same time dimension as
variables, and
p
the parameters.
t ij , x
the state
Inverse Problem :
 Let f j ( x(tij , x0 , p), p)
observed states,
be the predicted states by the model to the
(tij , yij ). Then the inverse problem is to fit the model
to the data with the least dimensionless error between the predicted
and the observed:
E( F , f ) ( p, x0 ) 

l
kj
 w
j 1 i 1
2
ij
f j ( x(tij , x0 , p), p)  yij
2
The least error of the model for the process is
 ( F , f )  min E( F , f ) ( p, x0 )  E ( p , x0 )
( p , x0 )
with the minimizer
( p , x0 ) being the best fit of the model to
the data.

The best model for the process F satisfies
for all proposed models G .
 ( F , f )   (G, f )

Gradient Search Method for Local Minimizers:
In the parameter and initial state space
( p, x0 ) , a search path
( p, x0 )(s) satisfies the gradient search equation:
  ( p, x0 )
2


E
( p, x0 )
 s

l kj

 2 w2 ij  f j ( x(tij , x0 , p), p)  yij D( p , x0 ) f j ( x(tij , x0 , p), p)

j 1 i 1


 ( p(0), x (0))  ( p , x )
0
0
0, 0

A local minimizer is found as
( p  , x0 )  lim( p, x0 )( s )
s 
 My belief: The fewer the local minima,
the better the model.

Dimensional Analysis by the Buckingham

Theorem:
Old Dimension = m + n
New Dimension = (m – n – 1) + n + l + 1 = n + m – ( n – l )
Degree of Freedom for the Best Fit = Old Dimension – New Dimension = n – l
 A best fit by the dimensionless model corresponds to a (n – l )-dimensional
surface of the same least error fit, i.e., best fit in general is not unique.
Example: Logistic equation with Holling Type II harvesting
x
ax
x
aK
x'  rx(1  ) 
 x '  x(1  x) 
with  
,  hK
K 1 h x
1  x
r
where n = 1, m = 4, and m – n – 1 = 2.
With best fit to l = 1 data set, there is zero, n – l = 0, degree of freedom.
Holling’s Type II Form (Can. Ent. 1959)
For One Predator:
Prey captured during T period of time
X C  (T  h X C ) a X
where
T = given time
a = encounter probability rate
h = handling time per prey
Solve it for the per-predator Predation Rate:
XC
aX

T
1  haX
XC
Type I Form, h = 0
1/h
Type II Form, h > 0
X
Dimensional Model
Dimensionless Model
By Method of Line Search
for local extrema
Left Chirality and Right Chirality :

vi 1

vi

 
vi  vi1  k

 0,
right chirality
 0,
left chirality
,
 By Taylor s expansion:
2

 2 E ( p  , x0 )  xi ,0  xi ,0 
1  2 E ( p  , x0 )  pi  pi  1



  
E ( p, x0 )  E ( p , x0 )  
 ...
 2 

 2 


2
( pi pi )  pi  2 ( xi ,0 xi ,0 )  xi ,0 
2
 Best-Fit Sensitivity :
1  2 E ( p , x0 )
1  2 E ( p , x0 )
S pi 
S xi , 0 
 2 ,
2 ( pi pi )
2 ( xi ,0 xi,0 ) 2
 Best-Fit Sensitivity :
S pi 


0
 2
i
1  E( p , x )
2 ( pi p )
2
, Sx
i,0
1  2 E ( p , x0 )

2 ( xi ,0 xi,0 ) 2
 All models are constructed to fail against the test of time.
 Is Hare-Lynx Dynamics Chaotic?
Rate of Expansion along Time Series ~ exp(l)
l  Lyapunov Exponent > 0  Chaos
S. Ellner & P. Turchin
Amer. Nat.
1995
1844 -- 1935
N.C. Stenseth
Science
1995
Alternative Title:
Holling made trappers to drive hares to eat lynx
Dimension: n + m
Dimension: n + m - n - 1 + l +1 = n + m - n + l