Project Collaborators and Contributors: Derek Skolnik (Sr. Project Engineer, Kinemetrics) Aziz Akhtary (Grad Student Researcher, CSU Fullerton) Leonardo Massone (Assist.

Download Report

Transcript Project Collaborators and Contributors: Derek Skolnik (Sr. Project Engineer, Kinemetrics) Aziz Akhtary (Grad Student Researcher, CSU Fullerton) Leonardo Massone (Assist.

Project Collaborators and Contributors:
Derek Skolnik (Sr. Project Engineer, Kinemetrics)
Aziz Akhtary (Grad Student Researcher, CSU Fullerton)
Leonardo Massone (Assist. Prof. , Univ. of Chile, Santiago)
Juan Carlos de la Llerra (Dean, Catholic University of Chile, Santiago)
John Wallace (Professor, UCLA)
Anne Lemnitzer (Assist. Prof, Cal State Fullerton)
1
Preparation of Instrumentation Layouts
Equipment provided by NEES@UCLA
Instrumentation used:
2
3
4
Buildings selected based on:
- Access and permission
-Typical design layouts representative for Chile and the US
-Local collaborator for building selection: Juan Carlos de la Llerra
Ambient Vibration
2 Aftershocks
Ambient Vibration
30 Aftershocks
Ambient Vibration
4 Aftershocks
5
Building A:
-23 story RC office building in Santiago’s
Business district
-Structural system:
2 inner cores with surrounding frame
- Post Earthquake structural damage: None
6
Instrumentation Layout:
Level 1:
Glass-facade
Stairway
N
Elevators
Elevators
DAQ
Roof:
7
Building B:
-10 story RC residential
building
- Structural system:
Shear Walls
-Post Earthquake damage:
I.
Shear wall failure,
II. Column buckling,
III. Extensive non-structural
failure,
IV. slab bending &
concrete spalling
8
Observed Damages in the 10 story shear
wall building:
Repetitive Damage at the -1
level (Parking level):
Wall-Slab intersections
9
10
11
12
13
Floor Plan: Ground Floor (-1 Level)
14
Instrumentation on Ground Level:
15
Triaxial sensor
Instrumentation Layout: First Floor (shear wall instrumentation)
Instrumented floors:
-Parking Level (-1) :
-2nd floor :
-9th floor :
-Roof :
1 triaxial sensor
3 triaxial sensors
3 uniaxial sensors
16 sensors
3 uniaxial
Shear Wall Instrumentation
17
Instrumentation Layout: Exemplarily for 2nd floor
3 triaxial sensors
18
9th Floor instrumentation:
3 uniaxial sensors
19
20
Selected aftershock:
2010 05/02 14:52:39 UTC
Earthquake info Chilean Seismic Network
21
20
0
-20
80
100
0
-20
60
80
100
-20
80
100
-20
60
80
100
120
60
80
100
120
20
9th
0
-20
40
60
80
100
120
20
2nd
0
-20
40
Grnd (cm/s 2)
0
40
-20
120
20
Roof
40
2nd (cm/s 2)
0
60
0
120
20
40
20
120
20
40
2nd (cm/s 2)
60
9th (cm/s 2)
9th (cm/s 2)
40
Grnd (cm/s 2)
NS Acceleration
Roof (cm/s2)
Roof (cm/s2)
EW Acceleration
60
80
100
120
20
0
-1 st
-20
40
60
80
100
120
22
EW Displacement
NS Displacement
2
Roof (mm)
Roof (mm)
2
0
-2
60
80
100
120
40
60
80
100
120
2
9th (mm)
9th (mm)
2
0
-2
0
9th
-2
40
60
80
100
120
40
60
80
100
120
2
2nd (mm)
2
2nd (mm)
Roof
-2
40
0
-2
0
2nd
-2
40
60
80
100
120
40
60
80
100
120
2
Grnd (mm)
2
Grnd (mm)
0
0
-2
0
-1 st
-2
40
60
80
100
120
40
60
80
100
120
23
Figure 4: Shear-flexure interaction for a wall subject to
lateral loading. (adapted from Massone and Wallace, 2004)
24
-0.1
60
80
Time (s)
100
0.1
0
-0.1
40
60
80
Time (s)
100
0
-0.1
120
LVDT Disp (mm)
LVDT Disp (mm)
40
120
Vertical LVDTs
0
0.1
40
60
80
Time (s)
100
120
40
60
80
Time (s)
100
120
Diagonal LVDTs
LVDT Disp (mm)
LVDT Disp (mm)
0.1
0.1
0
-0.1
25
0.2
shear
flexure
0.15
Wall top Disp (mm)
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2
30
40
50
60
70
80
Time (s)
90
100
110
120
The rotation for flexure was taken at the base of the wall (so the top displacement is multiplied by the wall height), which is
the largest value expected for flexure. If we assume that the flexure corresponds to a rotation at wall mid-height, the flexural
26
component should be multiplied by 0.5.
Acceleration
Displacement
0.2
0.1
EW (cm)
EW (cm/s 2)
10
0
3 triaxial sensors
0
-0.1
-10
40
60
80
Time (s)
100
-0.2
120
40
60
80
Time (s)
100
120
40
60
80
Time (s)
100
120
40
60
80
Time (s)
100
120
0.2
0.1
NS (cm)
NS (cm/s 2)
10
0
0
-0.1
-10
40
60
80
Time (s)
100
-0.2
120
0.2
0.1
z (cm)
z (cm/s 2)
10
0
0
-0.1
-10
40
60
80
Time (s)
100
120
-0.2
27
-3
Torsion and rocking
-5
Acceleration
5
2
Torsion (rad)
Torsion (rad/s2)
4
x 10
0
-2
-4
40
60
80
Time (s)
100
x 10
0
-5
120
Displacement
40
60
80
Time (s)
100
120
60
80
Time (s)
100
120
60
80
Time (s)
100
120
0.04
Rocking about X (rad)
3 triaxial sensors
Rocking about X (rad/s2)
-4
0.02
0
-0.02
-0.04
40
60
80
Time (s)
100
5
0
-5
120
5
2
0
-2
-4
40
40
-5
x 10
Rocking about Y (rad)
NOTE CHANGE IN
SCALE FOR XAXIS ROCKING
Rocking about Y (rad/s 2)
-3
4
x 10
60
80
Time (s)
100
120
x 10
0
-5
40
28
Rocking about the x axis = orientation of shear wall (corresponds to shear wall cracking)
2.5
Roof
9th
2nd
Ground
2
1.5
1
NS (mm)
0.5
0
-0.5
-1
-1.5
-2
-2.5
-2.5
-2
-1.5
-1
-0.5
0
0.5
EW (mm)
1
1.5
2
2.5
29
4
4
3.5
3.5
3
3
2.5
2.5
FFT NS
FFT EW
4
4
x 10
2
x 10
Roof
2
1.5
1.5
1
1
9th
0.5
0.5
2nd
0
0
0
1
2
3
Freq (Hz)
4
5
-1 st
0
1
2
3
Freq (Hz)
4
5
30
-Analysis of more aftershock measurements (Stronger intensities)
-Transfer Functions
-Further Analysis of Modal Components
-Building modeling in commercially available software (e.g., SAP 2000 and others)
-Provide data for shear wall research (cyclic model studies)
31
Building C: “Golf”
-10 story office building
-Unoccupied except for floors # 2 & 8
- Inner core shear wall with outer
frame system
- No structural damage
- 4 parking levels (-1 through -4)
- Instrumented floors: 1 & 10
- Sensors: 8 accelerometers
32
Building: Golf 80, Las Condes, Santiago, Chile
33
The only earthquake damage observed: Minor glass breaking on outside Fassade
34
Floor plan for typical floor:
35
Foto’s from the inside: 10th floor
36
37
Chilean Seismic Network info for earthquake:
2010-03-26- 14:54:08 UTC
38
u2
u1
Acceleration
NS (cm/s 2)
v0
v1
4
10th
1st
2
q0
v2
u0
0
-4
u4
u3
-2
0
10
20
30
40
50
Time (s)
60
70
80
90
100
v2
v3
EW (cm/s 2)
4
Center acc were
calculated assuming rigid
diaphragms and using the
following equations:
2
0
-2
-4
0
10
20
30
40
50
Time (s)
60
70
80
90
100
10
20
30
40
50
Time (s)
60
70
80
90
100
-3
Tor (rad/s2)
4
x 10
2
0
-2
-4
0
39
Max values 1st floor:
E_W
Center acc : 1.2 cm/s2
Corner acc: 1.2 cm/s2
Acceleration
NS (cm/s 2)
4
10th
1st
2
0
-2
-4
0
10
20
30
40
50
Time (s)
60
70
80
90
100
N_S
Center acc: 1.2 cm/s2
Corner: 1.2 cm/s2
No Torsion
EW (cm/s 2)
4
2
0
Max values 10th floor:
-2
-4
0
10
20
30
40
50
Time (s)
60
70
80
90
100
-3
Tor (rad/s2)
4
x 10
E_W
Center acc : 3.5 cm/s2
Corner acc: 4.3 cm/s2
2
N_S
Center acc: 2.8 cm/s2
Edge: 5.0 cm/s2
0
-2
-4
0
10
20
30
40
50
Time (s)
60
70
80
90
100
Torsion
40
Max values 1st floor:
Displacement
10th
1st
0.1
NS (cm)
E_W
Center acc : 0.31 mm
Corner acc: 0.32 mm
0
-0.1
0
10
20
30
40
50
Time (s)
60
70
80
90
100
Perfect rigid body motion
at 1st floor
0.1
EW (cm)
N_S
Center acc: 0.29 mm
Edge: 0.29 mm
0
Max values 10th floor:
-0.1
0
10
20
30
40
50
Time (s)
60
70
80
90
100
-5
Tor (rad)
5
x 10
N_S
Center acc: 0.74 mm
Edge: 1.24mm
0
-5
0
E_W
Center acc : 1.15 mm
Corner acc: 1.2 mm
10
20
30
40
50
Time (s)
60
70
80
90
100
Twisting / Torsion on 10th floor
41
10th
1st
1
NS (mm)
0.5
0
-0.5
-1
-1
-0.5
0
EW (mm)
0.5
1
42
1st Floor
10th Floor
60
500
400
NS 1
NS 10
40
20
300
200
100
0
0
1
2
3
Freq (Hz)
4
0
5
600
40
400
EW 1
EW 10
60
20
0
0
1
2
3
Freq (Hz)
4
0.015
1
2
3
Freq (Hz)
4
5
0
1
2
3
Freq (Hz)
4
5
0
1
2
3
Freq (Hz)
4
5
200
0
5
0
0.4
0.3
Tor 1
Tor 10
0.01
0.005
0
0.2
0.1
0
1
2
3
Freq (Hz)
4
5
0
43
• Understanding building modal behavior
• Building modeling and more advanced system identification (e.g., transfer
functions) to obtain better modal properties (e.g., damping, mode shapes… if
possible)
• Test rigid diaphragm assumption using sensor redundancy on floors (e.g.,
comparing floor center motions using different subsets of sensors)
•Comprehensive building modeling in SAP 2000 or equivalent software
packages
•Data sharing at the NEES platform
44

Airport regulations (invitation letters, label equipment as
non stationary)

Trigger and record mechanisms (set minimum
recording time vs. EQ duration + Dt)
Instrumentation cabling (<100m, Power supplies)
 Time Frame (aftershock span)
 Local collaboration (building access, installation, translations)
 Equipment Transportation (luggage vs shipping)
 Take Pictures of every sensor with reference
on it….

45
On Site Instrumentation Team
US Team Members:
Anne Lemnitzer (CSUFullerton)
Alberto Salamanca (NEES @ UCLA)
Aditya Jain (Digitexx)
Marc Sereci (Digitexx; EERI team member)
John Wallace (UCLA, Instrumentation PI)
Local Graduate Student Members :
Matias Chacom, (Pontificia Universidad Católica de Chile)
Javier Encina, (Pontificia Universidad Católica de Chile)
Joao Maques, (Pontificia Universidad Católica de Chile)
Local Faculty Collaborators
Juan C. De La Llera M. (Pontificia Universidad Católica de Chile)
Leonardo Massone (University of Chile, Santiago)
CO-Pis on the NSF Rapid Proposal
Robert Nigbor (UCLA)
John Wallace (UCLA)
46
47