Project Collaborators and Contributors: Derek Skolnik (Sr. Project Engineer, Kinemetrics) Aziz Akhtary (Grad Student Researcher, CSU Fullerton) Leonardo Massone (Assist.
Download ReportTranscript Project Collaborators and Contributors: Derek Skolnik (Sr. Project Engineer, Kinemetrics) Aziz Akhtary (Grad Student Researcher, CSU Fullerton) Leonardo Massone (Assist.
Project Collaborators and Contributors: Derek Skolnik (Sr. Project Engineer, Kinemetrics) Aziz Akhtary (Grad Student Researcher, CSU Fullerton) Leonardo Massone (Assist. Prof. , Univ. of Chile, Santiago) Juan Carlos de la Llerra (Dean, Catholic University of Chile, Santiago) John Wallace (Professor, UCLA) Anne Lemnitzer (Assist. Prof, Cal State Fullerton) 1 Preparation of Instrumentation Layouts Equipment provided by NEES@UCLA Instrumentation used: 2 3 4 Buildings selected based on: - Access and permission -Typical design layouts representative for Chile and the US -Local collaborator for building selection: Juan Carlos de la Llerra Ambient Vibration 2 Aftershocks Ambient Vibration 30 Aftershocks Ambient Vibration 4 Aftershocks 5 Building A: -23 story RC office building in Santiago’s Business district -Structural system: 2 inner cores with surrounding frame - Post Earthquake structural damage: None 6 Instrumentation Layout: Level 1: Glass-facade Stairway N Elevators Elevators DAQ Roof: 7 Building B: -10 story RC residential building - Structural system: Shear Walls -Post Earthquake damage: I. Shear wall failure, II. Column buckling, III. Extensive non-structural failure, IV. slab bending & concrete spalling 8 Observed Damages in the 10 story shear wall building: Repetitive Damage at the -1 level (Parking level): Wall-Slab intersections 9 10 11 12 13 Floor Plan: Ground Floor (-1 Level) 14 Instrumentation on Ground Level: 15 Triaxial sensor Instrumentation Layout: First Floor (shear wall instrumentation) Instrumented floors: -Parking Level (-1) : -2nd floor : -9th floor : -Roof : 1 triaxial sensor 3 triaxial sensors 3 uniaxial sensors 16 sensors 3 uniaxial Shear Wall Instrumentation 17 Instrumentation Layout: Exemplarily for 2nd floor 3 triaxial sensors 18 9th Floor instrumentation: 3 uniaxial sensors 19 20 Selected aftershock: 2010 05/02 14:52:39 UTC Earthquake info Chilean Seismic Network 21 20 0 -20 80 100 0 -20 60 80 100 -20 80 100 -20 60 80 100 120 60 80 100 120 20 9th 0 -20 40 60 80 100 120 20 2nd 0 -20 40 Grnd (cm/s 2) 0 40 -20 120 20 Roof 40 2nd (cm/s 2) 0 60 0 120 20 40 20 120 20 40 2nd (cm/s 2) 60 9th (cm/s 2) 9th (cm/s 2) 40 Grnd (cm/s 2) NS Acceleration Roof (cm/s2) Roof (cm/s2) EW Acceleration 60 80 100 120 20 0 -1 st -20 40 60 80 100 120 22 EW Displacement NS Displacement 2 Roof (mm) Roof (mm) 2 0 -2 60 80 100 120 40 60 80 100 120 2 9th (mm) 9th (mm) 2 0 -2 0 9th -2 40 60 80 100 120 40 60 80 100 120 2 2nd (mm) 2 2nd (mm) Roof -2 40 0 -2 0 2nd -2 40 60 80 100 120 40 60 80 100 120 2 Grnd (mm) 2 Grnd (mm) 0 0 -2 0 -1 st -2 40 60 80 100 120 40 60 80 100 120 23 Figure 4: Shear-flexure interaction for a wall subject to lateral loading. (adapted from Massone and Wallace, 2004) 24 -0.1 60 80 Time (s) 100 0.1 0 -0.1 40 60 80 Time (s) 100 0 -0.1 120 LVDT Disp (mm) LVDT Disp (mm) 40 120 Vertical LVDTs 0 0.1 40 60 80 Time (s) 100 120 40 60 80 Time (s) 100 120 Diagonal LVDTs LVDT Disp (mm) LVDT Disp (mm) 0.1 0.1 0 -0.1 25 0.2 shear flexure 0.15 Wall top Disp (mm) 0.1 0.05 0 -0.05 -0.1 -0.15 -0.2 30 40 50 60 70 80 Time (s) 90 100 110 120 The rotation for flexure was taken at the base of the wall (so the top displacement is multiplied by the wall height), which is the largest value expected for flexure. If we assume that the flexure corresponds to a rotation at wall mid-height, the flexural 26 component should be multiplied by 0.5. Acceleration Displacement 0.2 0.1 EW (cm) EW (cm/s 2) 10 0 3 triaxial sensors 0 -0.1 -10 40 60 80 Time (s) 100 -0.2 120 40 60 80 Time (s) 100 120 40 60 80 Time (s) 100 120 40 60 80 Time (s) 100 120 0.2 0.1 NS (cm) NS (cm/s 2) 10 0 0 -0.1 -10 40 60 80 Time (s) 100 -0.2 120 0.2 0.1 z (cm) z (cm/s 2) 10 0 0 -0.1 -10 40 60 80 Time (s) 100 120 -0.2 27 -3 Torsion and rocking -5 Acceleration 5 2 Torsion (rad) Torsion (rad/s2) 4 x 10 0 -2 -4 40 60 80 Time (s) 100 x 10 0 -5 120 Displacement 40 60 80 Time (s) 100 120 60 80 Time (s) 100 120 60 80 Time (s) 100 120 0.04 Rocking about X (rad) 3 triaxial sensors Rocking about X (rad/s2) -4 0.02 0 -0.02 -0.04 40 60 80 Time (s) 100 5 0 -5 120 5 2 0 -2 -4 40 40 -5 x 10 Rocking about Y (rad) NOTE CHANGE IN SCALE FOR XAXIS ROCKING Rocking about Y (rad/s 2) -3 4 x 10 60 80 Time (s) 100 120 x 10 0 -5 40 28 Rocking about the x axis = orientation of shear wall (corresponds to shear wall cracking) 2.5 Roof 9th 2nd Ground 2 1.5 1 NS (mm) 0.5 0 -0.5 -1 -1.5 -2 -2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 EW (mm) 1 1.5 2 2.5 29 4 4 3.5 3.5 3 3 2.5 2.5 FFT NS FFT EW 4 4 x 10 2 x 10 Roof 2 1.5 1.5 1 1 9th 0.5 0.5 2nd 0 0 0 1 2 3 Freq (Hz) 4 5 -1 st 0 1 2 3 Freq (Hz) 4 5 30 -Analysis of more aftershock measurements (Stronger intensities) -Transfer Functions -Further Analysis of Modal Components -Building modeling in commercially available software (e.g., SAP 2000 and others) -Provide data for shear wall research (cyclic model studies) 31 Building C: “Golf” -10 story office building -Unoccupied except for floors # 2 & 8 - Inner core shear wall with outer frame system - No structural damage - 4 parking levels (-1 through -4) - Instrumented floors: 1 & 10 - Sensors: 8 accelerometers 32 Building: Golf 80, Las Condes, Santiago, Chile 33 The only earthquake damage observed: Minor glass breaking on outside Fassade 34 Floor plan for typical floor: 35 Foto’s from the inside: 10th floor 36 37 Chilean Seismic Network info for earthquake: 2010-03-26- 14:54:08 UTC 38 u2 u1 Acceleration NS (cm/s 2) v0 v1 4 10th 1st 2 q0 v2 u0 0 -4 u4 u3 -2 0 10 20 30 40 50 Time (s) 60 70 80 90 100 v2 v3 EW (cm/s 2) 4 Center acc were calculated assuming rigid diaphragms and using the following equations: 2 0 -2 -4 0 10 20 30 40 50 Time (s) 60 70 80 90 100 10 20 30 40 50 Time (s) 60 70 80 90 100 -3 Tor (rad/s2) 4 x 10 2 0 -2 -4 0 39 Max values 1st floor: E_W Center acc : 1.2 cm/s2 Corner acc: 1.2 cm/s2 Acceleration NS (cm/s 2) 4 10th 1st 2 0 -2 -4 0 10 20 30 40 50 Time (s) 60 70 80 90 100 N_S Center acc: 1.2 cm/s2 Corner: 1.2 cm/s2 No Torsion EW (cm/s 2) 4 2 0 Max values 10th floor: -2 -4 0 10 20 30 40 50 Time (s) 60 70 80 90 100 -3 Tor (rad/s2) 4 x 10 E_W Center acc : 3.5 cm/s2 Corner acc: 4.3 cm/s2 2 N_S Center acc: 2.8 cm/s2 Edge: 5.0 cm/s2 0 -2 -4 0 10 20 30 40 50 Time (s) 60 70 80 90 100 Torsion 40 Max values 1st floor: Displacement 10th 1st 0.1 NS (cm) E_W Center acc : 0.31 mm Corner acc: 0.32 mm 0 -0.1 0 10 20 30 40 50 Time (s) 60 70 80 90 100 Perfect rigid body motion at 1st floor 0.1 EW (cm) N_S Center acc: 0.29 mm Edge: 0.29 mm 0 Max values 10th floor: -0.1 0 10 20 30 40 50 Time (s) 60 70 80 90 100 -5 Tor (rad) 5 x 10 N_S Center acc: 0.74 mm Edge: 1.24mm 0 -5 0 E_W Center acc : 1.15 mm Corner acc: 1.2 mm 10 20 30 40 50 Time (s) 60 70 80 90 100 Twisting / Torsion on 10th floor 41 10th 1st 1 NS (mm) 0.5 0 -0.5 -1 -1 -0.5 0 EW (mm) 0.5 1 42 1st Floor 10th Floor 60 500 400 NS 1 NS 10 40 20 300 200 100 0 0 1 2 3 Freq (Hz) 4 0 5 600 40 400 EW 1 EW 10 60 20 0 0 1 2 3 Freq (Hz) 4 0.015 1 2 3 Freq (Hz) 4 5 0 1 2 3 Freq (Hz) 4 5 0 1 2 3 Freq (Hz) 4 5 200 0 5 0 0.4 0.3 Tor 1 Tor 10 0.01 0.005 0 0.2 0.1 0 1 2 3 Freq (Hz) 4 5 0 43 • Understanding building modal behavior • Building modeling and more advanced system identification (e.g., transfer functions) to obtain better modal properties (e.g., damping, mode shapes… if possible) • Test rigid diaphragm assumption using sensor redundancy on floors (e.g., comparing floor center motions using different subsets of sensors) •Comprehensive building modeling in SAP 2000 or equivalent software packages •Data sharing at the NEES platform 44 Airport regulations (invitation letters, label equipment as non stationary) Trigger and record mechanisms (set minimum recording time vs. EQ duration + Dt) Instrumentation cabling (<100m, Power supplies) Time Frame (aftershock span) Local collaboration (building access, installation, translations) Equipment Transportation (luggage vs shipping) Take Pictures of every sensor with reference on it…. 45 On Site Instrumentation Team US Team Members: Anne Lemnitzer (CSUFullerton) Alberto Salamanca (NEES @ UCLA) Aditya Jain (Digitexx) Marc Sereci (Digitexx; EERI team member) John Wallace (UCLA, Instrumentation PI) Local Graduate Student Members : Matias Chacom, (Pontificia Universidad Católica de Chile) Javier Encina, (Pontificia Universidad Católica de Chile) Joao Maques, (Pontificia Universidad Católica de Chile) Local Faculty Collaborators Juan C. De La Llera M. (Pontificia Universidad Católica de Chile) Leonardo Massone (University of Chile, Santiago) CO-Pis on the NSF Rapid Proposal Robert Nigbor (UCLA) John Wallace (UCLA) 46 47