WE2B-5 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson1, Keith A. Tang1, Kenneth H.K.
Download ReportTranscript WE2B-5 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson1, Keith A. Tang1, Kenneth H.K.
WE2B-5 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson1, Keith A. Tang1, Kenneth H.K. Yau1, Pascal Chevalier2, Bernard Sautreuil2, and Sorin P. Voinigescu1 1) Edward S. Rogers, Sr. Dept. of Electrical & Comp. Eng., University of Toronto, Toronto, ON M5S 3G4, Canada 2) STMicroelectronics, 850 rue Jean Monnet, F-38926 Crolles, France © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Outline • • • • • • Motivation Transceiver architecture Circuit design & layout + some device insight Fabrication technology Measurements Conclusions © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Applications • W-band applications: 77GHz auto radar, 94GHz weather radar, imaging, data communications • All applications require a W-band radio transceiver. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 The Doppler Radar Transceiver • Doppler transceiver block diagram Modulation VCO freq. div. PA To PLL Antennae IF amp LNA Mixer • Development steps – Design & test circuit blocks + optimize HBT for circuit performance – Integrate circuit blocks into transceiver – Duplicate to form arrays © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Low-noise Amplifier • 3-stage design, add R1 to de-Q the final stage. 250mm 1pF decoupling caps • Noise & impedance matching including CPAD [Nicolson, 2006]. Z0 CPADZ 02 ZS j k k k 1 2 2 C PAD Z 02 LE ( new) © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Z0 kT g m( new) kg m Power Amplifier • Primary goal: maximize PAE – common source, class AB operation © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Down-conversion Mixer • Classical Gilbert cell mixer has poor linearity at 2.5V – Eliminate RF pair – Couple to LNA using transformer – Bias quad from center tap • Simulations – 9dB conversion gain – +3dBm OP1dB (1.25VPP/side) – 12.5mW PDC input © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Mixer + IF Amp Layout • Layout is critical at 77GHz. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Frequency Divider • The most challenging block to operate from 2.5V. • Given sizes of Q1-Q6, the size of Q7 & Q8 can be optimized. – important: inductor size, swing, latch pair size, current density. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Frequency Divider • The most challenging block to operate from 2.5V. • Given sizes of Q1-Q6, the size of Q7 & Q8 can be optimized. – important: inductor size, swing, latch pair size, current density. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 SiGe Technology [Chevalier, 2006] • 230/290GHz fT/fMAX SiGe HBT process • Several “process splits” to find optimal HBT profile. 14mA/mm2 © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 LNA Measurements • Fabricated & measured a 65nm CMOS LNA for comparison. – CMOS has more power supply variation (HBT feedback is stronger) – CMOS has low output resistance higher bandwidth HBT @ peak f MAX 1 g m RE 3.8 g m 14 VT m S mm RE 5mm 2 NFET @ peak f MAX 1 g m RS 1.2 g m 1 m S mm RS 200mm © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 LNA Measurements • S21 vs. temp. shows 6dB variation up to 125C @ center band. – Again, upper band shows greater variation (less feedback). smaller change in gain here larger change in gain here © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 PA Measurements • PAE = 15.7%, PSAT = +14 dBm, OP1dB = +11dBm © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Mixer + IF Amplifier Measurements • DSB noise figure of 13dB is pessimistic – harmonics from LO multiplier source, includes 3dB transformer loss. • Min. NF current density at 73GHz (common base) is 5.5mA/mm2. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Frequency Divider Measurements • Operates up to 105.44GHz at 25°C and 97GHz at 100°C. – limited by power available from source. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Performance of Process Splits • The best split is the reference, with the highest fMAX. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Conclusions and Future Work • Excellent performance despite 2.5V supply. – – – – SiGe divider 94GHz self-oscillation, and 75mW power consumption. 77GHz power amplifier PAE of 15.7% +5dBm OP1dB from Mixer + IF amplifier -101.5dBc/Hz at phase noise at 1MHz offset • Transceiver currently in the fab – < 500mW power consumption (180mW for receiver, inc. VCO) – Contains only 33 HBTs (includes 16 in divider) + 2 MOS varactors. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Acknowledgements • Ricardo Aroca and Katia Laskin for measurement help • Jaro Pristupa and Eugenia Distefano for CAD/Network support • STMicroelectronics & CITO for fabrication and funding © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 **Voltage-Controlled Oscillator • Minimize phase noise, supply & temp dependence [2], [3]. – Small LB, differential tuning – C1 + CBE >> CVAR, C3 cancels CBC © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 VCO Measurements • Phase noise better than -100dBc/Hz at 77GHz [2], [3]. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 More About Process Splits • LNA S21 for several process splits. – Reference split looks the best. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 More About Process Splits • PA saturated S21 for several process splits – Again, the reference split looks the best. © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 More About Process Splits • PA S11 for several process splits © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007 Inductor Measurements • Accurately simulated/modeled [Dickson, 2005] passives ( ±1pH). © Sean©Nicolson, BCTM 2006 Sean Nicolson, 2007