Presentation Slides for Chapter 9 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 21, 2005
Download ReportTranscript Presentation Slides for Chapter 9 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 21, 2005
Presentation Slides for Chapter 9 of Fundamentals of Atmospheric Modeling 2nd Edition Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 21, 2005 Earth-Atmosphere Energy Balance Fig. 9.1 Radiant energy per year ---> Radiant energy per year Energy Transfer From Equator to Poles Absorbed incoming solar Surplus Emitted outgoing infrared Deficit Deficit Transfer -90 -60 -30 0 30 Latitude 60 90 Fig. 9.2 Electromagnetic Spectrum Radiation in the form of an electromagnetic wave Wavelength (9.1) c 1 ˜ Radiation in the form of a photon of energy Energy per unit photon (J photon-1) hc E p h (9.3) Electromagnetic Spectrum --> --> --> = 0.5 m Ep = 3.97 x 10-19 J photon-1 = 5.996 x 1014 s-1 ˜ = 2 m-1 --> --> --> = 10 m Ep = 1.98 x 10-20 J photon-1 = 2.998 x 1013 s-1 ˜ = 0.1 m-1 Example 9.1: Planck’s Law Radiance Intensity of emission per incremental solid angle Planck radiance (W m-2 m-1 sr-1) (9.4) 2hc 2 B,T hc 5 exp 1 k B T Radiance actually emitted by a substance e B,T (9.5) Kirchoff’s law In thermodynamic equilibrium, absorptivity (a) = emissivity () --> the efficiency at which a substance absorbs equals that at which it emits. --> a perfect emitter is a perfect absorber Emissivities Infrared emissivities of different surfaces Surface Type Liquid water Fresh snow Old snow Liq. water clouds Cirrus clouds Ice Emissivity (fraction) 1.0 0.99 0.82 0.25 - 1.0 0.1 - 0.9 0.96 Surface Type Soil Grass Desert Forest Concrete Urban Emissivity (fraction) 0.9 - 0.98 0.9 - 0.95 0.84 - 0.91 0.95 - 0.97 0.71-0.9 0.85 - 0.87 Table 9.1 Solid Angle Radiance emitted from point (O) passes through incremental area dAs at distance rs from the point. Incremental surface area (9.7) 2 dAs rsdrs sind rs sindd Incremental solid angle (sr) (9.6) Steradians analogous to radians dAs da 2 sindd rs Solid angle around a sphere (9.9) a 2 a da 0 0 sindd 4 Fig. 9.3 Spectral Actinic Flux Integral of spectral radiance over all solid angles of a sphere Used to calculate photolysis rate coefficients Incremental spectral actinic flux (9.10) dE Ida Spectral actinic flux E (9.11) 2 a dE a I da 0 0 I sindd Isotropic spectral actinic flux 2 0 s indd 4I E I 0 (9.12) Spectral Irradiance Flux of radiant energy propagating across a flat surface Used to calculate heating rates Incremental spectral irradiance (9.13) dF = Icosda Integral of dF over the hemisphere above the x-y plane (9.14) F 2 2 a dF a I cosd a 0 0 I cossindd Isotropic spectral irradiance 2 2 (9.15) F I cos s indd I 0 0 Spectral irradiance at the surface of a blackbody F = I B,T (9.16) Irradiance (W m-2 m-1) Spectral Irradiance v. Temperature Fig. 9.4 Emission Spectra of the Sun and Earth 104 Irradiance (W m-2 -2 m-1)m -1 ) Irradiance emission versus wavelength for the Sun and Earth when both are considered blackbodies Sun 102 Visible 0 10 -2 Ultraviolet 10 Infrared Earth -4 10 0.01 0.1 1 10 Wavelength m) ( 100 Fig. 9.5 Ultraviolet and Visible Solar Spectrum -2 4 1.2 10 1 104 Near UV 4 103 2 103 0.1 0.2 Red 3 6 10 Green Blue 8 103 Far UV UV-A UV-B -1 m Irradiance (W m-2 m-1) ) Ultraviolet and visible portions of the solar spectrum. Visible 0.3 0.4 0.5 0.6 Wavelength m) ( 0.7 0.8 Fig. 9.6 Wien’s Displacement Law Differentiate Planck's law with respect to wavelength at constant temperature and set result to zero Peak wavelength of emissions from blackbody (9.17) 2897 p m TK Example 9.2: Sun’s photosphere p = 2897/5800 K = 0.5 m Earth’s surface p = 2897/288 K = 10.1 m Wien’s Displacement Law 0.5 m 4 10 -2 -1 m ) Irradiance (W m-2 m-1 ) Gives line through peak irradiances at different temperatures. 102 100 6000 K 4000 K 2000 K 1000 K -2 10 -4 10 0.01 10 m 300 K 0.1 1 10 Wavelength m) ( 100 Fig. 9.7 Stefan-Boltzmann Law Integrate Planck irradiance over all wavelengths Stefan-Boltzmann law (W m-2) Fb (9.18) 0 B,T d B T 4 Stefan-Boltzmann constant 2kB4 4 8 -2 K-4 W m B 5.67 10 3 2 15h c Example 9.3: T = 5800 K ---> FT = 64 million W m-2 T = 288 K ---> FT = 390 W m-2 Reflection and Refraction Reflection Angle of reflection equals angle of incidence Refraction Angle of wave propagation relative to surface normal changes as the wave passes from a medium of one density to that of another Fig. 9.8 Reflection Albedo = fraction of incident sunlight reflected Albedos in the non-UVB solar spectrum Surface Type Albedo (fraction) Earth & atmosphere 0.3 Liquid water 0.05 - 0.2 Fresh snow 0.75 - 0.95 Old snow 0.4 - 0.7 Thick clouds 0.3 - 0.9 Thin clouds 0.2 - 0.7 Sea Ice 0.25 - 0.4 Surface Type Soil Grass Desert Forest Asphalt Concrete Urban Albedo (fraction) 0.05 - 0.2 0.16 - 0.26 0.20 - 0.40 0.10 - 0.25 0.05 - 0.2 0.1 - 0.35 0.1 - 0.27 Table 9.2 Refraction Snell’s law (9.19) n2 sin1 n1 sin 2 Real part of the index of refraction (≥1) (9.20) Ratio of speed of light in a vacuum to that in a given medium c n1 c1 Real part of the index of refraction of air 8 (9.21) 15, 997 na, 1 10 8342.13 2 2 130 38.9 2, 406,030 Real Refractive Indices v Wavelength Wavelength (m) 0.3 0.5 1.0 10.0 Air Water 1.000292 1.000279 1.000274 1.000273 1.349 1.335 1.327 1.218 Table 9.2 Refraction ---> ---> ---> ---> 1 nair nwater 2 cair = 0.5 m = 45o = 1.000279 = 1.335 = 32o = 2.9971 x 108 m s-1 ---> cwater = 2.2456 x 108 m s-1 Example 9.4: n2 sin1 n1 sin 2 Total Internal Reflection Critical angle (9.22) 1 n1 o 2,c s in s in90 n2 Example 9.5: ---> ---> ---> nair nwater 2,c = 0.5 m = 1.000279 = 1.335 = 48.53o Geometry of a Primary Rainbow Fig. 9.9 Diffraction Around A Particle Huygens' principle Each point of an advancing wavefront may be considered the source of a new series of secondary waves Fig. 9.10 Radiation Scattering by a Sphere Ray A is reflected Ray B is refracted twice Ray C is diffracted Ray D is refracted, reflected twice, then refracted Ray E is refracted, reflected once, and refracted Fig. 9.11 Forward and Backscattering Cloud droplets Scatter primarily in the forward direction Gas molecules Scatter evenly in the forward and backward directions. Fig. 9.12 Change in Color of Sun During the Day Fig. 9.13 Gas Absorption Gas Absorption wavelengths (m) Visible/Near-UV/Far-UV absorbers Ozone < 0.35, 0.45-0.75 Nitrate radical < 0.67 Nitrogen dioxide < 0.71 Near-UV/Far-UV absorbers Formaldehyde < 0.36 Nitric acid < 0.33 Far-UV absorbers Molecular oxygen Carbon dioxide Water vapor Molecular nitrogen < 0.245 < 0.21 < 0.21 < 0.1 Table 9.4 Fraction of transmitted radiation through all important gases Fraction transmitted Fraction transmitted Gas Absorption 1 Line-by-line Model 0.8 0.6 Eleven gases 0.4 0.2 0 1 10 100 Wavelength m) ( 1000 Fig 9.14 Fraction of transmitted radiation through water vapor 1 Fraction transmitted Fraction transmitted Gas Absorption H2 O 0.8 Line-by-line Model 0.6 0.4 0.2 0 1 10 100 Wavelength m) ( 1000 Fig 9.14 Gas Absorption Fraction transmitted 1 0.8 CO2 0.6 0.4 Line-by-line Model 0.2 0 1 10 100 Wavelength m) ( 1000 Fig 9.14 Gas Absorption Fraction transmitted 1 0.8 O3 0.6 0.4 Line-by-line Model 0.2 0 1 10 100 Wavelength m) ( 1000 Fig 9.14 Fraction transmitted Gas Absorption 1 0.95 0.9 0.85 CH4 Line-by-line Model 0.8 0.75 0.7 1 10 100 Wavelength m) ( 1000 Fig 9.14 Extinction Coefficient Attenuation of incident radiance, Io, due to absorption as it travels through a column of gas. Extinction coefficient () (cm-1, m-1, or km-1) A measure of the loss of radiation per unit distance Fig 9.15 Extinction Coefficient Reduction in radiance with distance through a gas (9.23) dI Nq ba,g,q,,T I a,g,q,,T I dx Integrate (9.24) I I0, eNq ba, g,q, , T xx0 I 0,ea, g,q, , T xx 0 Extinction coefficient due gas absorption a,g, Transmission Na g Na g q 1 q 1 (9.25) Nq ba,g,q,,T a,g,q,,T (9.29) I Ta,g,q, e uq ka, g,q, e a, g,q, xx 0 I0 Absorption Coefficient Extinction coefficient in terms of mass absorption (9.26) Na g Na g Nag N q mq uq a,g, q k a,g,q, ka,g,q, k a,g,q, A x x 0 2 2 /g)/g) Absorption coefficient (cm Absorption coefficient (cm q 1 q1 q1 2 10 1 322.15 hPa 22.57 hPa 10 0 10 -1 10 -2 10 10-3 6.619 6.6205 6.622 6.6235 6.625 Wavelength m) ( Fig 9.16 Absorption Coefficient Absorption Coefficient (9.27) Sq T q pa , T A 1 k a,g,q, 2 m q ˜ ˜q q pref pa q pa , T 2 Pressure-broadened half-width (9.28) nq T re f q pa ,T air,q pre f , Tre f pa pq se lf ,q pre f , Tre f pq T Transmission Example Monochromatic transmission (9.29) I Ta,g,q, uq e uq ka, g,q, e a,g, q, xx0 I0 Exact transmission when two absorption lines T ˜ , ˜ ˜u 0.5 e k x u e k y u (9.30) Transmission overestimated when lines averaged T ˜ , ˜ ˜u e 0.5 k x ky u (9.31) Correlated k-Distribution Method Exact transmission in wavenumber interval (9.32) k u 1 ˜ ˜ k ˜u ˜ e T e d f ˜ , ˜ ˜u ˜ k dk ˜ ˜ 0 Integration of differential probability is unity (9.33) 0 f˜k dk 1 Reorder absorption coefs. into cumulative frequency distribution (9.34) g ˜k k 0 f˜ k dk Effects on Visibility of Gas Absorption Meteorological range (Koschmieder equation) 3.912 x ext, Meteorological ranges due to Rayleigh scattering and NO2 absorption Wavelength (mm) 0.42 0.50 0.55 0.65 Rayleigh Scat. (km) 112 227 334 664 <-- NO2 absorption --> 0.01 ppmv 0.25 ppmv (km) (km) 296 11.8 641 25.6 1,590 63.6 13,000 520 Table 9.5 Effects on Visibility of Gas Absorption -1 Extinction coefficient (km-1)) Extinction coefficient due to NO2 and O3 absorption. 101 100 10-1 -2 10 10-3 -4 10 -5 10 10-6 NO (g) (0.25 ppmv) 2 NO (g) (0.01 ppmv) 2 O (g) (0.25 ppmv) 3 O (g) (0.01 ppmv) 3 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 Wavelengthm) ( Fig. 9.17 Gas Scattering Rayleigh scatterer: 2r/ <<1 Extinction coefficient due to Rayleigh scattering (9.35) s,g, Na bs,g, Scattering cross section of a typical air molecule (cm2) (9.36) 2 2 2 3 8 na, 1 32 na, 1 bs,g, f * f * 4 2 4 2 3 Na,0 3 Na,0 3 Anisotropic correction factor 6 3 * f * 1.05 6 7* (9.37) Rayleigh Scattering Example Example 9.6: ---> ---> pa T s,g, x = 0.5 m = 1 atm (sea level) = 288 K = 1.72 x 10-7 cm-1 = 227 km ---> ---> = 0.55 m s,g, = 1.17 x 10-7 cm-1 x = 334 km Imaginary Index of Refraction Measure of extent to which a substance absorbs radiation Attenuation of incident radiance, I0, due to absorption Equation for attenuation dI 4 I dx Integrate I I0e Fig 9.18 (9.38) (9.39) 4 xx0 Complex Index of Refraction m n i (9.40) Real and imaginary refractive indices at = 0.5 and 10 m Substance Liquid water Black carbon Organic matter Sulfuric acid <-- 0.5 m --> Real Imaginary 1.34 1x10-9 1.82 0.74 1.45 0.001 1.43 1x10-8 <-- 10 m --> Real Imaginary 1.22 0.05 2.4 1.0 1.77 0.12 1.89 0.46 Table 9.6 Transmission Light transmission through particles at = 0.5 m Diameter (m) <-- Transmission (I/I0) --> Black carbon Water (=0.74) (=1x10-9) 0.1 1.0 10 0.16 8x10-9 0 0.999999997 0.99999997 0.9999997 Table 9.6 Imaginary index of refraction Imaginary Refractive Index of Liquid Nitrobenzene 0.5 0.4 0.3 0.2 0.1 0 0.2 0.3 0.4 0.5 0.6 Wavelength m) ( 0.7 Fig. 9.19 Particle Extinction Coefficients Particle absorption/scattering extinction coefficients a,a, (9.41) NB niba,a,i, i1 s,a, NB nibs,a,i, i1 Particle absorption/scattering cross sections 2 ba,a,i, ri Qa,i, bs,a,i, ri2Qs,i, (9.42) Tyndall Absorption / Scattering Rayleigh regime (di<0.03 or ai,<0.1) Size parameter a i, 2ri (9.43) Tyndall absorption efficiency (linear with ri/) (9.44) 2 2 2ri m 1 2ri 24n Qa,i, 4 Im 2 2 2 2 2 2 m 2 n 4 n 1 (9.45) 2ri 24n 0 --> Qa,i, --> linear with 2 2 n 2 Tyndall Absorption / Scattering Tyndall scattering efficiency [linear with (ri/] 8 2ri 4 Qs,i, 3 Example 9.7 (Liquid water): ---> ---> ---> ---> ri Qs,i, Qa,i, = 0.5 m = 0.01 m = 1.34 = 1.0 x 10-9 = 2.9 x 10-5 = 2.8 x 10-10 2 2 m 1 2 m 2 (9.46) Mie Absorption / Scattering Mie regime (0.03< di <32 or 0.1< ai,<100) Single particle Mie scattering efficiency 2 Qs,i, a i, 2k 1ak (9.47) 2 bk k1 2 Single particle Mie absorption efficiency Qa,i, Qe,i, Qs,i, Single particle total extinction coefficient Qe,i, 2 a i, 2k 1Reak bk k1 (9.48) Soot Absorption/Scattering Efficiencies Single Particle Absorption/Scattering Efficiency at = 0.50 m 1.5 1 0.5 2 Mie regime Rayleigh regime Rayleigh regime 2 Geometric regime Q 1.5 s 1 Qa Q 0.5 f 0 0.01 0.1 1 10 100 P article diameterm) ( 0 1000 Fig. 9.20 Water Absorption/Scattering Efficiencies Rayleigh regime Single Particle Absorption/Scattering Efficiency at = 0.50 m. 5 3 2 1 0 0.01 Rayleigh regime qsc 4 Mie regime Geometric regime 103 101 10-1 10-3 -5 10 Q f Q s 0.1 Q a 1 10 100 P article diameterm) ( -7 10 -9 10 1000 Fig. 9.21 Geometric Absorption / Scattering Geometric regime (di >32 or ai,>100) --> significant diffraction In the limit (ai,-->∞), scattering efficiency is constant (9.49) li m Qs,i, a i, 1 m 1 m 2 Also, as ai,-->∞, Qs,i,≈Qs,i, regardless of how weak the imaginary index of refraction is. Example 9.8: ---> ---> ---> Qs,i, Qa,i, = 0.5 m = 1.34 for liquid water = 1.1 as ai,-->∞ from9.49 = 1.1 as ai,-->∞ from Fig. 9.21 Mixing Rules Volume average (9.50) m NV q q1 m ,q NV q n i q1 Volume average dielectric constant m 2 NV q q1 m 2,q NV q q1 ,q (9.54) NV q r, ii, q1 Complex dielectric constant (9.51) 2 2 2 2 m n i n i2n r, ii, Mixing Rules Real/imaginary complex dielectric constant r, n2 2 (9.52) i, 2 n Real and imaginary refractive indices n 2 2 r, i, r, 2 (9.53) 2 2 r, i, r, 2 Mixing Rules Maxwell Garnett (9.55) NA A,q ,A,q ,M 3 ,A,q 2 ,M q1 2 m ,M 1 NA A,q ,A,q ,M 1 , A,q 2 ,M q 1 Bruggeman (9.56) N A A,q ,M 1 , A,q 2 ,M 2 q 1 q1 NA A,q ,A,q Absorption cross section Enhancement factor Absorption cross section enhancement due to internal mixing enhancement factor Absorption cross section Absorption Cross Section Enhancement 6 5 4 d BC (m ) =0.5 m 0.04 0.08 0.12 3 2 1 0 0.01 0.1 1 10 100 Total particle (soot core+S(VI) shell) diameter m) ( Fig. 9.22 Modeled Extinction Coefficient Profile 0 0.1 0.2 0.3 0.4 0.5 Claremont 8/27/97 11:30 0.32 m 400 Pressure (hPa) Pressure (hPa) 300 500 600 Gas scat. 700 Gas abs. Aer. abs. Aer. scat. 800 900 1000 0 0.1 0.2 0.3 0.4 0.5 (km-1 ) Fig. 9.23a Modeled Extinction Coefficient Profile 0 0.1 0.2 0.3 0.4 0.5 Claremont 8/27/97 11:30 0.61 m 400 Pressure (hPa) Pressure (hPa) 300 500 600 Gas scat. Gas abs. 700 800 Aer. abs. Aer. scat. 900 1000 0 0.1 0.2 0.3 0.4 0.5 (km-1 ) Fig. 9.23b Visibility Definitions Meteorological range Distance from an ideal dark object at which the object has a 0.02 liminal contrast ratio against a white background Liminal contrast ratio Lowest visually perceptible brightness contrast a person can see Visual range Actual distance at which a person can discern an ideal dark object against the horizon sky Prevailing visibility Greatest visual range a person can see along 50 percent or more of the horizon circle (360o), but not necessarily in continuous sectors around the circle. Visibility Definitions The intensity of radiation increases from 0 at point x0 to I at point x due to the scattering of background light into the viewer’s path Fig. 9.24 Meteorological Range Contrast ratio IB I Cratio IB (9.57) Change in object intensity along path of radiation dI t I B I dx Total extinction coefficient t a,g s,g a,p s,p (9.58) Integrate (9.58) and substitute into (9.57) IB I t x Cratio e IB Meteorological range (Koschmieder equation) (9.60) 3.912 x t (9.59) (9.61) Meteorological Range Meteorological Range (km) Gas Gas Particle Particle scattering absorption scattering absorption All Polluted day 366 130 9.59 49.7 7.42 Lesspolluted day 352 326 151 421 67.1 (Larson et al., 1984) Table 9.8 Optical Depth Total extinction coefficient (9.62) s,g, a,g, s,a, a,a, s,h, a,h, Incremental distance versus incremental path length (9.63) dz cossdSb sdSb Incremental optical depth (9.66) d dz sdSb Optical depth as a function of altitude z Sb dz (9.63) s dSb Optical Depth Relationship between optical depth, altitude, solar zenith angle, and pathlength Fig. 9.22 Solar Zenith Angle Cosine of solar zenith angle (9.67) cos s sin sin cos cos cos H a Solar declination angle () Angle between the equator and the north or south latitude of the subsolar point Subsolar point Point at which the sun is directly overhead Local hour angle (Ha) Angle, measured westward, between longitude of subsolar point and longitude of location of interest. Solar Zenith Angle Geometry for zenith angle calculations. Fig. 10.26 b Solar Declination Angle Solar declination angle (9.68) 1 sin sinob sinec Obliquity of the ecliptic (9.69) Angle between the plane of the Earth's equator and the plane of the ecliptic, which is the mean plane of the Earth's orbit around the Sun. ob 23o .439 0o .0000004N JD Solar Declination Angle Ecliptic longitude of the sun (9.71) ec LM 1o.915sing M 0 o.020sin2gM Mean longitude of the sun (9.72) LM 280o.460 0 o.9856474NJD Mean anomaly of the sun g M 357o.528 0o.9856003NJD (9.72) Solar Zenith Angle Local hour angle (9.73) 2ts Ha 86, 400 Example: At noon, when sun is directly overhead, Ha = 0 ---> cos s sin sin cos cos When the sun is over the equator, = 0 ---> coss cos cosHa Solar Zenith Angle Example 9.9: 1:00 p.m., PST, Feb. 27, 1994, = 35 oN ---> DJ = 58 ---> NJD = -2134.5 ---> gm = -1746.23o ---> Lm = -1823.40o ---> ce = -1821.87o ---> ob = 23.4399o ---> = -8.52o ---> Ha = 15.0o o o o o o ---> coss sin 35 sin 8.52 cos 35 cos 8.52 cos15.0 ---> s = 45.8o Solstices and Equinoxes Solar declinations during solstices and equinoxes. The Earth-Sun distance is greatest at the summer solstice. Sun Sun N.H . sum sols mer, tice S.H . , Ju ne 2 winter 2 Vernal equinox, Mar. 20 Tropic of Cancer Axis of rotation Equator 23.5o Autumnal equinox, Sept. 23 23.5o Sun er m sum . Topic of H . 2 S r, .2 e c t Capricorn e n i D w , . ce N.H solsti Earth Fig. 9.27 Radiative Transfer Equation Change in radiance / irradiance along a beam of interest Change in radiance along incremental path length (9.74) dI dIso, dIao, dIsi, dI Si, dI e i, Scattering of radiation out of the beam (9.75) dI so, I s,dSb Absorption of radiation along the beam dI ao, I a,dSb (9.76) Radiative Transfer Equation Multiple scattering of diffuse radiation into the beam (9.77) s,k, 2 1 dI si, k I, , Ps,k,,,,, dddSb 0 1 4 Single scattering of direct solar radiation into beam (9.78) s,k , dI Si, k Ps,k,, s ,,s Fs, e s dSb 4 Emission of infrared Planckian radiation into beam dI e i, a, B,T dSb (9.79) Extinction Coefficients Extinction due to total scattering (9.80) s, s,g, s,a, s,h, Extinction due to total absorption (9.80) a, a,g, a,a, a,h, Extinction due to total scattering plus absorption s, a, (9.81) Scattering Phase Function Gives angular distribution of scattered energy vs. direction Scattering phase function for diffuse radiation Ps,k , ,, ,, redirects diffuse radiation from ’, ’ to , Scattering phase function for direct radiation Ps,k , ,, s ,, s redirects direct solar radiation from - , to , Scattering Phase Function Single scattering of direct solar radiation and multiple scattering of diffuse radiation. Fig. 9.28 Scattering Phase Function Scattering phase function defined such that (9.82) 1 Ps,k, da 1 4 4 = angle between directions ’, ’ and , Substitute da sindd --> 1 2 Ps,k , sindd 1 4 0 0 (9.83) Scattering Phase Function Phase function for isotropic scattering (9.84) Ps,k , 1 Phase function for Rayleigh scattering (9.85) 3 Ps,k , 1 cos2 4 Henyey-Greenstein function Ps,k, (9.86) 2 1 ga,k, 32 2 1 ga,k, 2ga,k, cos Scattering Phase Function Scattering phase functions for (a) isotropic and (b) Rayleigh scattering 1.5 1 0.5 1.5 1 Ps () 0 0.5 -0.5 -1 -1 -1.5 -1.5 1 0.5 0 -0.5 -1 -1.5 -2 (a) 0 -0.5 2 1.5 Ps () 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 (b) Fig. 9.29 Asymmetry Factor First moment of phase function -- relative direction of scattering 0 ga,k, 0 0 (9.88) forward (Mi e) scatteri ng isotropic or Rayleigh scatteri ng backward scatteri ng (9.87) 1 ga,k, Ps,k, cosd a 4 4 Expand with da sindd ---> (9.89) 1 2 ga,k, Ps,k, cos s indd 4 0 0 Isotropic Scattering ---> Ps,k , 1 ---> (9.90) 1 2 ga,k, cos s indd 0 4 0 0 Asymmetry Factor Rayleigh scattering ---> (9.91) 1 2 3 2 ga,k, 1 cos cos s indd 0 4 0 0 4 Mie scattering ---> (9.92) ga,k, Q f,i, Qs,i, Backscatter ratio ba,k , 2 0 2 Ps,k, s indd 2 0 0 Ps,k, s indd (9.93) Energy Emitted by Sun to Earth Summed irradiance (W m-2) emitted at Sun's photosphere Fp Lp 4 T B p 2 4R p Lp = emissions from Sun's photosphere = 3.9 x 1026 W Rp = radius from Sun center to photosphere = 6.96 x 108 m Tp = temperature of photosphere = 5796 K Example 9.10: Tp = 5796 K --->Fp ≈ 6.4 x 107 W m-2 (9.94) Solar Constant Mean summed irradiance at top of Earth's atmosphere (9.95) 2 2 R p Rp 4 Fs F T p R B p R es es Calculated Fs Measured ≈ 1379 W m-2 Fs ≈ 1365 W m-2 Varies by +/- 1 W m-2 over each 11 year sunspot cycle Solar Constant Daily solar flux depends on Earth-Sun distance (9.96) 2 Res Fs Fs Res Empirical formula (9.97) 2 Res R 1.00011 0.034221cos J 0.00128sin J es 0.000719cos2 J 0.000077sin2J J 2DJ DY Incident Solar Flux Example 9.11: December 22 ---> Fs = 1365 x 1.034 = 1411 W m-2 June 22 ---> Fs = 1365 x 0.967 = 1321 W m-2 --> Irradiance varies by 90 W m-2 (6.6%) between Dec. and June Cumulative solar irradiance as sum of spectral irradiances (9.98) 2 2 Res Res Fs Fs, Fs, Fs Res Res Seasons Relationship between the Sun and Earth during the solstices and equinoxes Fig. 9.30 Equilibrium Earth Temperature Energy (W) absorbed by the Earth-atmosphere system (9.99) 2 Ein Fs 1 Ae,0 Re Energy emitted by the Earth's surface 4 (9.100) 2 Eout e,0 BTe 4Re Equate --> temperature without greenhouse effect Fs 1 Ae,0 Te 4 e,0 B 14 (9.101) Equilibrium Earth Temperature Example 9.12: Fs ---> Ae,0 Te = 1365 W m-2 = 0.3 = 254.8 K Actual average surface temperature on earth ≈ 288 K --> difference due to absorption by greenhouse gases Radiative Transfer Equation dI ,, dSb (9.102) s,k, 2 1 I ,, s, a, I , , Ps,k , ,, ,, dd 0 1 4 k s Fs,e s,k, 4 Ps,k, ,, s ,, s a, B,T k Single scattering albedo (9.103) s,g, s,a, s,h, s, s, s,g, a,g, s,a, a,a, s,h, a,h, Total extinction coefficient s, a, Optical depth d sdSb Radiative Transfer Equation Rewrite radiative transfer equation where dI,, d (9.104) diffuse direct emis I,, J,, J,, J,, (9.105) s,k, 2 1 d 0 1 I ,, Ps,k,,,,, d k (9.106) s,k, 1 dire ct s J ,, Fs, e Ps,k ,,, s ,,s 4 1 diffuse J ,, 4 k emis J,, 1 s, B,T (9.107) Beer’s Law Consider only absorption in downward direction dI,, d a, (9.108) I , , Solution (9.109) I,, a, I ,, a,,t e a, a,,t Schwartzchild’s Equation Consider absorption and infrared emissions dI,, d a, (9.111) I , , B,T Solution (9.112) I,, a, I ,, a,,t e a, a,,t 1 a, a, a, B,T a, e d a, a,,t Two-Stream Method Divide phase function into upward (+) and downward component (9.114) 1 g 1 ga,k, a,k, I I u pward 2 2 1 2 1 I, , Ps,k,,,,, d d 0 1 4 1 g 1 ga,k, a,k, I I d own war 2 2 Substitute (9.114) into (9.105) (9.115) s, 1 b I s, b I 2 1 1 s,k, I,, Ps,k,,,,, d d 0 1 4 1 b I b I k s, s, Two-Stream Method Integrated fraction of forward scattered energy (9.116) 1 ga, 1 b 2 Integrated fraction of backscattered energy (9.116) 1 ga, b 2 Effective asymmetry parameter s,a, ga,a, s,c, ga,h, ga, s,g, s,a, s,h, (9.117) 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 300 300 600 g 700 a s No aerosols With aerosols 800 500 600 1000 1000 1 a s No aerosols With aerosols 800 900 0.2 0.4 0.6 0.8 g 700 900 0 Claremont 8/27/97 11:30 0.61 m 400 Pressure (hPa) 500 Pressure (hPa) Claremont 8/27/97 11:30 0.32 m 400 Pressure (hPa) Pressure (hPa) Modeled Asymmetry Parameter 0 0.2 0.4 0.6 0.8 Fig. 9.28 1 Two-Stream Approximation Upward radiance equation (9.119) dI s 1 I s 1 bI s bI 1 3ga1s Fse s d 4 Downward radiance equation (9.120) dI s 1 I s 1 bI s bI 1 3ga1s Fs e s d 4 Irradiances in terms of radiance for two-stream approximation F 21 I F 21 I Two-Stream Approximation Substitute irradiances and generalize for different phase function approximations Solar irradiance (9.121) dF 1F 2 F 3 s Fs e s d dF 1F 2 F 1 3 s Fs e s d Surface boundary condition Aes Fs e N L 1 2 s F N L 1 2 Ae F NL 1 2 BT (9.123) sol ar infrared Two-Stream Approximation Coefficients for two stream approximations using two techniques Approximation 1 2 s 1 ga 21 3 Quadrature 1 s 1 ga 2 1 Eddington 7 s 4 3ga 1 s 4 3ga 2 3ga s 4 4 4 1 3ga 1 s 2 Infrared irradiance (9.122) dF 1F 2 F 21 s BT d dF 1F 2 F 21 s BT Table 9.10 d Delta Functions Quadrature and Eddington solutions underpredict forward scattering because expansion of phase function is too simple to obtain the strong peak in scattering efficiency. --> adjust terms with delta functions (9.124) ga ga 1 ga s 2 1 g2a s 2 1 s ga 1 s ga Heating Rates Net flux divergence equation (9.125) 1 dQsolar dQir 1 Fn T t r cp,m dt dt cp,ma z Net downward minus upward radiative flux Fn 0 F F d Partial derivative term Fn,k z (9.126) F ,k1 2 F ,k1 2 F ,k1 2 F ,k1 2 zk1 2 zk1 2 Temperature change (9.127) Fn Tk h c p,ma z 1 Photolysis Coefficients Photolysis rate (s-1) at bottom of layer k J q, p,k 1 2 (9.128) 0 4I p,,k 1 2ba,g,q,,T Yq, p,,T d Radiance at bottom of layer k (photons cm-2 m sr-1 s-1) (9.129) 10 m3 I p,,k 1 2 I ,k 1 2 I ,k 1 2 10 2 cm m hc Example 9.14: ---> ---> I = 12 W m-2 in band 0.495 m < < 0.505 m mean = 0.5 m Ip, = 3.02 x 1015 photons cm-2 s-1